No Arabic abstract
Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rather than e.g. pixels. For this task, the cumbersome and iterative process of method configuration constitutes a major research bottleneck. Recently, nnU-Net has tackled this challenge for the task of image segmentation with great success. Following nnU-Nets agenda, in this work we systematize and automate the configuration process for medical object detection. The resulting self-configuring method, nnDetection, adapts itself without any manual intervention to arbitrary medical detection problems while achieving results en par with or superior to the state-of-the-art. We demonstrate the effectiveness of nnDetection on two public benchmarks, ADAM and LUNA16, and propose 10 further medical object detection tasks on public data sets for comprehensive method evaluation. Code is at https://github.com/MIC-DKFZ/nnDetection .
This paper presents a Simple and effective unsupervised adaptation method for Robust Object Detection (SimROD). To overcome the challenging issues of domain shift and pseudo-label noise, our method integrates a novel domain-centric augmentation method, a gradual self-labeling adaptation procedure, and a teacher-guided fine-tuning mechanism. Using our method, target domain samples can be leveraged to adapt object detection models without changing the model architecture or generating synthetic data. When applied to image corruptions and high-level cross-domain adaptation benchmarks, our method outperforms prior baselines on multiple domain adaptation benchmarks. SimROD achieves new state-of-the-art on standard real-to-synthetic and cross-camera setup benchmarks. On the image corruption benchmark, models adapted with our method achieved a relative robustness improvement of 15-25% AP50 on Pascal-C and 5-6% AP on COCO-C and Cityscapes-C. On the cross-domain benchmark, our method outperformed the best baseline performance by up to 8% AP50 on Comic dataset and up to 4% on Watercolor dataset.
In this report, we introduce the technical details of our submission to the VIPriors object detection challenge. Our solution is based on mmdetction of a strong baseline open-source detection toolbox. Firstly, we introduce an effective data augmentation method to address the lack of data problem, which contains bbox-jitter, grid-mask, and mix-up. Secondly, we present a robust region of interest (ROI) extraction method to learn more significant ROI features via embedding global context features. Thirdly, we propose a multi-model integration strategy to refinement the prediction box, which weighted boxes fusion (WBF). Experimental results demonstrate that our approach can significantly improve the average precision (AP) of object detection on the subset of the COCO2017 dataset.
In robotic applications, we often face the challenge of discovering new objects while having very little or no labelled training data. In this paper we explore the use of self-supervision provided by a robot traversing an environment to learn representations of encountered objects. Knowledge of ego-motion and depth perception enables the agent to effectively associate multiple object proposals, which serve as training data for learning object representations from unlabelled images. We demonstrate the utility of this representation in two ways. First, we can automatically discover objects by performing clustering in the learned embedding space. Each resulting cluster contains examples of one instance seen from various viewpoints and scales. Second, given a small number of labeled images, we can efficiently learn detectors for these labels. In the few-shot regime, these detectors have a substantially higher mAP of 0.22 compared to 0.12 of off-the-shelf standard detectors trained on this limited data. Thus, the proposed self-supervision results in effective environment specific object discovery and detection at no or very small human labeling cost.
We present a simple yet effective progressive self-guided loss function to facilitate deep learning-based salient object detection (SOD) in images. The saliency maps produced by the most relevant works still suffer from incomplete predictions due to the internal complexity of salient objects. Our proposed progressive self-guided loss simulates a morphological closing operation on the model predictions for progressively creating auxiliary training supervisions to step-wisely guide the training process. We demonstrate that this new loss function can guide the SOD model to highlight more complete salient objects step-by-step and meanwhile help to uncover the spatial dependencies of the salient object pixels in a region growing manner. Moreover, a new feature aggregation module is proposed to capture multi-scale features and aggregate them adaptively by a branch-wise attention mechanism. Benefiting from this module, our SOD framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively. Experimental results on several benchmark datasets show that our loss function not only advances the performance of existing SOD models without architecture modification but also helps our proposed framework to achieve state-of-the-art performance.
In this paper, we propose a novel self-supervised representation learning method, Self-EMD, for object detection. Our method directly trained on unlabeled non-iconic image dataset like COCO, instead of commonly used iconic-object image dataset like ImageNet. We keep the convolutional feature maps as the image embedding to preserve spatial structures and adopt Earth Movers Distance (EMD) to compute the similarity between two embeddings. Our Faster R-CNN (ResNet50-FPN) baseline achieves 39.8% mAP on COCO, which is on par with the state of the art self-supervised methods pre-trained on ImageNet. More importantly, it can be further improved to 40.4% mAP with more unlabeled images, showing its great potential for leveraging more easily obtained unlabeled data. Code will be made available.