Do you want to publish a course? Click here

Topological Materials Discovery from Nonmagnetic Crystal Symmetry

121   0   0.0 ( 0 )
 Added by Benjamin Wieder
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a review of topological electronic materials discovery in crystalline solids from the prediction of the first 2D and 3D topological insulators (TIs) through the recently introduced methods that have facilitated large-scale searches for topological materials. We first briefly review the concepts of band theory and topology, as well as the experimental methods used to demonstrate nontrivial topology in solid-state materials. We then review the past 15 years of topological materials discovery, including the identification of the first nonmagnetic TIs, topological crystalline insulators (TCIs), and topological semimetals (TSMs). Most recently, through complete analyses of symmetry-allowed band structures - including the theory of Topological Quantum Chemistry (TQC) - researchers have determined crystal-symmetry-enhanced Wilson-loop and complete symmetry-based indicators for nonmagnetic topological phases, leading to the discovery of higher-order TCIs and TSMs. Lastly, we discuss the recent application of TQC and related methods to high-throughput materials discovery, which revealed that over half of all of the known stoichiometric, solid-state, nonmagnetic materials are topological at the Fermi level, over 85% of the known stoichiometric materials host energetically isolated topological bands, and that just under $2/3$ of the energetically isolated bands in known materials carry the stable topology of a TI or TCI. We conclude by discussing future venues for the identification and manipulation of solid-state topological phases, including charge-density-wave compounds, magnetic materials, and 2D few-layer devices.



rate research

Read More

The realization of Dirac and Weyl physics in solids has made topological materials one of the main focuses of condensed matter physics. Recently, the topic of topological nodal line semimetals, materials in which Dirac or Weyl-like crossings along special lines in momentum space create either a closed ring or line of degeneracies, rather than discrete points, has become a hot topic in topological quantum matter. Here we review the experimentally confirmed and theoretically predicted topological nodal line semimetals, focusing in particular on the symmetry protection mechanisms of the nodal lines in various materials. Three different mechanisms: a combination of inversion and time-reversal symmetry, mirror reflection symmetry, and non-symmorphic symmetry, and their robustness under the effect of spin orbit coupling are discussed. We also present a new Weyl nodal line material, the Te-square net compound KCu$_2$EuTe$_4$, which has several Weyl nodal lines including one extremely close to the Fermi level ($<$30 meV below E$_F$). Finally, we discuss potential experimental signatures for observing exotic properties of nodal line physics.
The discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 materials. We have clarified 5014 TP materials and classified them into single Weyl, high degenerate Weyl, and nodal-line (ring) TPs. Among them, three representative cases of TPs have been discussed in detail. Furthermore, we suggest 322 TP materials with potential clean nontrivial surface states, which are favorable for experimental characterizations. This work significantly increases the current library of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs.
Although the richness of spatial symmetries has led to a rapidly expanding inventory of possible topological crystalline (TC) phases of electrons, physical realizations have been slow to materialize due to the practical difficulty to ascertaining band topology in realistic calculations. Here, we integrate the recently established theory of symmetry indicators of band topology into first-principle band-structure calculations, and test it on a databases of previously synthesized crystals. The combined algorithm is found to efficiently unearth topological materials and predict topological properties like protected surface states. On applying our algorithm to just 8 out of the 230 space groups, we already discover numerous materials candidates displaying a diversity of topological phenomena, which are simultaneously captured in a single sweep. The list includes recently proposed classes of TC insulators that had no previous materials realization as well as other topological phases, including: (i) a screw-protected 3D TC insulator, b{eta}-MoTe2, with gapped surfaces except for 1D helical hinge states; (ii) a rotation-protected TC insulator BiBr with coexisting surface Dirac cones and hinge states; (iii) non-centrosymmetric Z2 topological insulators undetectable using the well-established parity criterion, AgXO (X=Na,K,Rb); (iv) a Dirac semimetal MgBi2O6; (v) a Dirac nodal-line semimetal AgF2; and (vi) a metal with three-fold degenerate band crossing near the Fermi energy, AuLiMgSn. Our work showcases how the recent theoretical insights on the fundamentals of band structures can aid in the practical goal of discovering new topological materials.
Quantum anomalous Hall effect (QAHE) has been experimentally observed in magnetically doped topological insulators. However, ultra-low temperature (usually below 300 mK), which is mainly attributed to inhomogeneous magnetic doping, becomes a daunting challenge for potential applications. Here, a textit{nonmagnetic}-doping strategy is proposed to produce ferromagnetism and realize QAHE in topological insulators. We numerically demonstrated that magnetic moments can be induced by nitrogen or carbon substitution in Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$, but only nitrogen-doped Sb$_2$Te$_3$ exhibits long-range ferromagnetism and preserve large bulk band gap. We further show that its corresponding thin-film can harbor QAHE at temperatures of 17-29 Kelvin, which is two orders of magnitude higher than the typical temperatures in similar systems. Our proposed textit{nonmagnetic} doping scheme may shed new light in experimental realization of high-temperature QAHE in topological insulators.
We identify all symmetry-enforced band crossings in nonmagnetic orthorhombic crystals with and without spin-orbit coupling and discuss their topological properties. We find that orthorhombic crystals can host a large number of different band degeneracies, including movable Weyl and Dirac points with hourglass dispersions, fourfold double Weyl points, Weyl and Dirac nodal lines, almost movable nodal lines, nodal chains, and topological nodal planes. Interestingly, spin-orbit coupled materials in the space groups 18, 36, 44, 45, and 46 can have band pairs with only two Weyl points in the entire Brillouin zone. This results in a simpler connectivity of the Fermi arcs and more pronounced topological responses than in materials with four or more Weyl points. In addition, we show that the symmetries of the space groups 56, 61, and 62 enforce nontrivial weak $mathbb{Z}_2$ topology in materials with strong spin-orbit coupling, leading to helical surface states. With these classification results in hand, we perform extensive database searches for orthorhombic materials crystallizing in the relevant space groups. We find that Sr$_2$Bi$_3$ and Ir$_2$Si have bands crossing the Fermi energy with a symmetry-enforced nontrivial $mathbb{Z}_2$ invariant, CuIrB possesses nodal chains near the Fermi energy, Pd$_7$Se$_4$ and Ag$_2$Se exhibit fourfold double Weyl points, the latter one even in the absence of spin-orbit coupling, whereas the fourfold degeneracies in AuTlSb are made up from intersecting nodal lines. For each of these examples we compute the ab-initio band structures, discuss their topologies, and for some cases also calculate the surface states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا