No Arabic abstract
The realization of Dirac and Weyl physics in solids has made topological materials one of the main focuses of condensed matter physics. Recently, the topic of topological nodal line semimetals, materials in which Dirac or Weyl-like crossings along special lines in momentum space create either a closed ring or line of degeneracies, rather than discrete points, has become a hot topic in topological quantum matter. Here we review the experimentally confirmed and theoretically predicted topological nodal line semimetals, focusing in particular on the symmetry protection mechanisms of the nodal lines in various materials. Three different mechanisms: a combination of inversion and time-reversal symmetry, mirror reflection symmetry, and non-symmorphic symmetry, and their robustness under the effect of spin orbit coupling are discussed. We also present a new Weyl nodal line material, the Te-square net compound KCu$_2$EuTe$_4$, which has several Weyl nodal lines including one extremely close to the Fermi level ($<$30 meV below E$_F$). Finally, we discuss potential experimental signatures for observing exotic properties of nodal line physics.
Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystals in the zeolite frameworks by first-principles calculations, we disclose two structurally stable Si allotropes (AHT-Si24 and VFI-Si36) containing open channels as topological node-line semimetals with Dirac nodal points forming a nodal loop in the kz=0 plane of Brillouin zone. Interestingly, their nodal loops protected by inversion and time-reversal symmetries are robust against SU(2) symmetry breaking due to very weak spin-orbit coupling of Si. When the nodal lines are projected onto the (001) surface, flat surface bands can be observed because of the nontrivial topology of the bulk band structures. Our discoveries extend the topological physics to the three-dimensional Si materials, highlighting the possibility to realize low-cost, nontoxic and semiconductor-compatible Si-based electronics with topological quantum states.
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transport properties invite studies of relativistic physics in the solid state where their linearly dispersing Dirac bands cross at continuous lines with four-fold degeneracy. In materials studied up to now, the four-fold degeneracy, however, has been vulnerable to suppression by the ubiquitous spin-orbit coupling (SOC). Despite the current effort to discover 3D DNLSs that are robust to SOC by theory, positive experimental evidence is yet to emerge. In 2D DNLSs, because of the decreased total density of states as compared with their 3D counterparts, it is anticipated that their physical properties would be dominated by the electronic states defined by the DNL. It has been even more challenging, however, to discover robust 2D DNLSs against SOC because of their lowered symmetry; no such materials have yet been predicted by theory. By combining molecular beam epitaxy growth, STM, nc-AFM characterisation, with DFT calculations and space group theory analysis, here we reveal a novel class of 2D crystalline DNLSs that host the exact symmetry that protects them against SOC. The discovered quantum material is a brick phase 3-AL Bi(110), whose symmetry protection and thermal stability are imparted by the compressive vdW epitaxial growth on black phosphorus substrates. The BP substrate templates the growth of 3-AL Bi(110) nano-islands in a non-symmorphic space group structure. This crystalline symmetry protects the DNL electronic phase against SOC independent of any orbital or elemental factors. We theoretically establish that this intrinsic symmetry imparts a general, robust protection of DNL in a series of isostructural 2D quantum materials.
We present a review of topological electronic materials discovery in crystalline solids from the prediction of the first 2D and 3D topological insulators (TIs) through the recently introduced methods that have facilitated large-scale searches for topological materials. We first briefly review the concepts of band theory and topology, as well as the experimental methods used to demonstrate nontrivial topology in solid-state materials. We then review the past 15 years of topological materials discovery, including the identification of the first nonmagnetic TIs, topological crystalline insulators (TCIs), and topological semimetals (TSMs). Most recently, through complete analyses of symmetry-allowed band structures - including the theory of Topological Quantum Chemistry (TQC) - researchers have determined crystal-symmetry-enhanced Wilson-loop and complete symmetry-based indicators for nonmagnetic topological phases, leading to the discovery of higher-order TCIs and TSMs. Lastly, we discuss the recent application of TQC and related methods to high-throughput materials discovery, which revealed that over half of all of the known stoichiometric, solid-state, nonmagnetic materials are topological at the Fermi level, over 85% of the known stoichiometric materials host energetically isolated topological bands, and that just under $2/3$ of the energetically isolated bands in known materials carry the stable topology of a TI or TCI. We conclude by discussing future venues for the identification and manipulation of solid-state topological phases, including charge-density-wave compounds, magnetic materials, and 2D few-layer devices.
Nonsymmoprhic symmetries, such as screw rotations or glide reflections, can enforce band crossings within high-symmetry lines or planes of the Brillouin zone. When these band degeneracies are close to the Fermi energy, they can give rise to a number of unusual phenomena: e.g., anomalous magnetoelectric responses, transverse Hall currents, and exotic surface states. In this paper, we present a comprehensive classification of such nonsymmorphic band crossings in trigonal materials with strong spin-orbit coupling. We find that in trigonal systems there are two different types of nonsymmorphic band degeneracies: (i) Weyl points protected by screw rotations with an accordion-like dispersion, and (ii) Weyl nodal lines protected by glide reflections. We report a number of existing materials, where these band crossings are realized near the Fermi energy. This includes Cu2SrSnS4 and elemental tellurium (Te), which exhibit accordion Weyl points; and the tellurium-silicon clathrate Te16Si38, which shows Weyl nodal lines. The ab-initio band structures and surface states of these materials are studied in detail, and implications for experiments are briefly discussed.
The optical properties of YbMnSb2 have been measured in a broad frequency range from room temperature down to 7 K. With decreasing temperature, a flat region develops in the optical conductivity spectra at about 300cm-1, which can not be described by the well-known Drude-Lorentz model. A frequency-independent component has to be introduced to model the measured optical conductivity. Our first-principles calculations show that YbMnSb2 possesses a Dirac nodal line near the Fermi level. A comparison between the measured optical properties and calculated electronic band structures suggests that the frequency-independent optical conductivity component arises from interband transitions near the Dirac nodal line, thus demonstrating that YbMnSb2 is a Dirac nodal line semimetal.