No Arabic abstract
Few-shot segmentation~(FSS) performance has been extensively promoted by introducing episodic training and class-wise prototypes. However, the FSS problem remains challenging due to three limitations: (1) Models are distracted by task-unrelated information; (2) The representation ability of a single prototype is limited; (3) Class-related prototypes ignore the prior knowledge of base classes. We propose the Prior-Enhanced network with Meta-Prototypes to tackle these limitations. The prior-enhanced network leverages the support and query (pseudo-) labels in feature extraction, which guides the model to focus on the task-related features of the foreground objects, and suppress much noise due to the lack of supervised knowledge. Moreover, we introduce multiple meta-prototypes to encode hierarchical features and learn class-agnostic structural information. The hierarchical features help the model highlight the decision boundary and focus on hard pixels, and the structural information learned from base classes is treated as the prior knowledge for novel classes. Experiments show that our method achieves the mean-IoU scores of 60.79% and 41.16% on PASCAL-$5^i$ and COCO-$20^i$, outperforming the state-of-the-art method by 3.49% and 5.64% in the 5-shot setting. Moreover, comparing with 1-shot results, our method promotes 5-shot accuracy by 3.73% and 10.32% on the above two benchmarks. The source code of our method is available at https://github.com/Jarvis73/PEMP.
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation is thus proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples. Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information of training classes and spatial inconsistency between query and support targets. To alleviate these issues, we propose the Prior Guided Feature Enrichment Network (PFENet). It consists of novel designs of (1) a training-free prior mask generation method that not only retains generalization power but also improves model performance and (2) Feature Enrichment Module (FEM) that overcomes spatial inconsistency by adaptively enriching query features with support features and prior masks. Extensive experiments on PASCAL-5$^i$ and COCO prove that the proposed prior generation method and FEM both improve the baseline method significantly. Our PFENet also outperforms state-of-the-art methods by a large margin without efficiency loss. It is surprising that our model even generalizes to cases without labeled support samples. Our code is available at https://github.com/Jia-Research-Lab/PFENet/.
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples in support images. Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype. However, this framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only. To address this issue, in this paper, we introduce a complementary self-contrastive task into few-shot semantic segmentation. Our new model is able to associate the pixels in a region with the prototype of this region, no matter they are in the foreground or background. To this end, we generate self-contrastive background prototypes directly from the query image, with which we enable the construction of complete sample pairs and thus a complementary and auxiliary segmentation task to achieve the training of a better segmentation model. Extensive experiments on PASCAL-5$^i$ and COCO-20$^i$ demonstrate clearly the superiority of our proposal. At no expense of inference efficiency, our model achieves state-of-the results in both 1-shot and 5-shot settings for few-shot semantic segmentation.
To address the annotation scarcity issue in some cases of semantic segmentation, there have been a few attempts to develop the segmentation model in the few-shot learning paradigm. However, most existing methods only focus on the traditional 1-way segmentation setting (i.e., one image only contains a single object). This is far away from practical semantic segmentation tasks where the K-way setting (K>1) is usually required by performing the accurate multi-object segmentation. To deal with this issue, we formulate the few-shot semantic segmentation task as a learning-based pixel classification problem and propose a novel framework called MetaSegNet based on meta-learning. In MetaSegNet, an architecture of embedding module consisting of the global and local feature branches is developed to extract the appropriate meta-knowledge for the few-shot segmentation. Moreover, we incorporate a linear model into MetaSegNet as a base learner to directly predict the label of each pixel for the multi-object segmentation. Furthermore, our MetaSegNet can be trained by the episodic training mechanism in an end-to-end manner from scratch. Experiments on two popular semantic segmentation datasets, i.e., PASCAL VOC and COCO, reveal the effectiveness of the proposed MetaSegNet in the K-way few-shot semantic segmentation task.
Currently, the state-of-the-art methods treat few-shot semantic segmentation task as a conditional foreground-background segmentation problem, assuming each class is independent. In this paper, we introduce the concept of meta-class, which is the meta information (e.g. certain middle-level features) shareable among all classes. To explicitly learn meta-class representations in few-shot segmentation task, we propose a novel Meta-class Memory based few-shot segmentation method (MM-Net), where we introduce a set of learnable memory embeddings to memorize the meta-class information during the base class training and transfer to novel classes during the inference stage. Moreover, for the $k$-shot scenario, we propose a novel image quality measurement module to select images from the set of support images. A high-quality class prototype could be obtained with the weighted sum of support image features based on the quality measure. Experiments on both PASCAL-$5^i$ and COCO dataset shows that our proposed method is able to achieve state-of-the-art results in both 1-shot and 5-shot settings. Particularly, our proposed MM-Net achieves 37.5% mIoU on the COCO dataset in 1-shot setting, which is 5.1% higher than the previous state-of-the-art.
The aim of few-shot learning (FSL) is to learn how to recognize image categories from a small number of training examples. A central challenge is that the available training examples are normally insufficient to determine which visual features are most characteristic of the considered categories. To address this challenge, we organize these visual features into facets, which intuitively group features of the same kind (e.g. features that are relevant to shape, color, or texture). This is motivated from the assumption that (i) the importance of each facet differs from category to category and (ii) it is possible to predict facet importance from a pre-trained embedding of the category names. In particular, we propose an adaptive similarity measure, relying on predicted facet importance weights for a given set of categories. This measure can be used in combination with a wide array of existing metric-based methods. Experiments on miniImageNet and CUB show that our approach improves the state-of-the-art in metric-based FSL.