No Arabic abstract
Integrated-optic components are being increasingly used in astrophysics, mainly where accuracy and precision are paramount. One such emerging technology is nulling interferometry that targets high contrast and high angular resolution. Two of the most critical limitations encountered by nullers are rapid phase fluctuations in the incoming light causing instability in the interference and chromaticity of the directional couplers that prevent a deep broadband interferometric null. We explore the use of a tricoupler designed by ultrafast laser inscription that solves both issues. Simulations of a tricoupler, incorporated into a nuller, result in order of a magnitude improvement in null depth.
Integrated optic beam combiners offer many advantages over conventional bulk optic implementations for astronomical imaging. To date, integrated optic beam combiners have only been demonstrated at operating wavelengths below 4 microns. Operation in mid-infrared wavelength region, however, is highly desirable. In this paper, a theoretical design technique based on three coupled waveguides is developed to achieve fully achromatic, broadband, polarization-insensitive, lossless beam combining. This design may make it possible to achieve the very deep broadband nulls needed for exoplanet searching.
Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line-of-sight so that the stellar flux is rejected, while the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations can degrade the nulling performance. Any imperfection in phase, amplitude, or polarization produces a spurious flux that leaks to the interferometer output and corrupts the transmitted off-axis flux. One of these instrumental pertubations is the crosstalk phenomenon, which occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction effects related to beam propagation along finite size optics. It can include a crosstalk of a beam with itself, and a mutual crosstalk between different beams. This can create a parasitic interference pattern, which degrades the intrinsic transmission map - or intensity response - of the interferometer. In this context, we describe how this instrumental effect impairs the performance of a Bracewell interferometer. A simple formalism is developed to derive the corresponding modified intensity response of the interferometer, as a function of the two parameters of interest: the crosstalk level (or contamination rate) and the phase shift between the primary and secondary - parasitic - beams. We then apply our mathematical approach to a few scientific cases, both analytically and using the GENIEsim simulation software, adapted to handle coherent crosstalk. Our results show that a coherent crosstalk level of about 1% implies a 20% drop of the SNR at most. Careful attention should thus be paid to reduce the crosstalk level inside an interferometric instrument and ensure an instrumental stability that provides the necessary sensitivity through calibration procedures.
Space-borne nulling interferometers have long been considered as the best option for searching and characterizing extra-solar planets located in the habitable zone of their parent stars. Solutions for achieving deep starlight extinction are now numerous and well demonstrated. However they essentially aim at realizing an achromatic central null in order to extinguish the star. In this communication is described a major improvement of the technique, where the achromatization process is extended to the entire fringe pattern. Therefore higher Signal-to-noise ratios (SNR) and appreciable simplification of the detection system should result. The basic principle of this Fully achromatic nulling interferometer (FANI) consists in inserting dispersive elements along the arms of the interferometer. Herein this principle is explained and illustrated by a preliminary optical system design. The typical achievable performance and limitations are discussed and some initial tolerance requirements are also provided
Regular two-dimensional lattices of evanescently coupled waveguides may provide in the near future photonic components capable of combining interferometrically and simultaneously a large number of telescopes, thus easing the imaging capabilities of optical interferometers. In this paper, the theoretical modeling of the so-called Discrete Beam Combiners (DBC) is described and compared to the conventional model used for photonic beam combiners for astronomical interferometry. The performance of DBCs as compared to an ideal ABCD beam combiner is discussed and applications to astronomical instrumentation analyzed.
The future of exoplanet detection lies in the mid-infrared (MIR). The MIR region contains the blackbody peak of both hot and habitable zone exoplanets, making the contrast between starlight and planet light less extreme. It is also the region where prominent chemical signatures indicative of life exist, such as ozone at 9.7 microns. At a wavelength of 4 microns the difference in emission between an Earth-like planet and a star like our own is 80 dB. However a jovian planet, at the same separation exhibits 60 dB of contrast, or only 20 dB if it is hot due to its formation energy or being close to its host star. A two dimensional nulling interferometer, made with chalcogenide glass, has been measured to produce a null of 20 dB, limited by scattered light. Measures to increase the null depth to the theoretical limit of 60 dB are discussed.