No Arabic abstract
The aim of this paper is twofold. We first present a construction of overconvergent automorphic sheaves for Siegel modular forms by generalising the perfectoid method, originally introduced by Chojecki--Hansen--Johansson for automorphic forms on compact Shimura curves over $mathbf{Q}$. These sheaves are then verified to be isomorphic to the ones introduced by Andreatta--Iovita--Pilloni. Secondly, we establish an overconvergent Eichler--Shimura morphism for Siegel modular forms, generalising the result of Andreatta--Iovita--Stevens for elliptic modular forms.
Let $F$ be a totally real field in which $p$ is unramified. We prove that, if a cuspidal overconvergent Hilbert cuspidal form has small slopes under $U_p$-operators, then it is classical. Our method follows the original cohomological approach of Coleman. The key ingredient of the proof is giving an explicit description of the Goren-Oort stratification of the special fiber of the Hilbert modular variety. A byproduct of the proof is to show that, at least when $p$ is inert, of the rigid cohomology of the ordinary locus has the same image as the classical forms in the Grothendieck group of Hecke modules.
We explain how to construct a cohomology theory on the category of separated quasi-compact smooth rigid spaces over $mathbf{C}_p$ (or more general base fields), taking values in the category of vector bundles on the Fargues-Fontaine curve, which extends (in a suitable sense) Hyodo-Kato cohomology when the rigid space has a semi-stable proper formal model over the ring of integers of a finite extension of $mathbf{Q}_p$. This cohomology theory factors through the category of rigid analytic motives of Ayoub.
Let $F$ be a quadratic real field, $p$ be a rational prime inert in $F$. In this paper, we prove that an overconvergent $p$-adic Hilbert eigenform for $F$ of small slope is actually a classical Hilbert modular form.
Let $Gamma$ be a finitely generated Fuchsian group of the first kind which has at least one parabolic class. Eichler introduced a cohomology theory for Fuchsian groups, called as Eichler cohomology theory, and established the $CC$-linear isomorphism from the direct sum of two spaces of cusp forms on $Gamma$ with the same integral weight to the Eichler cohomology group of $Gamma$. After the results of Eichler, the Eichler cohomology theory was generalized in various ways. For example, these results were generalized by Knopp to the cases with arbitrary real weights. In this paper, we extend the Eichler cohomology theory to the context of Jacobi forms. We define the cohomology groups of Jacobi groups which are analogues of Eichler cohomology groups and prove an Eichler cohomology theorem for Jacobi forms of arbitrary real weights. Furthermore, we prove that every cocycle is parabolic and that for some special cases we have an isomorphism between the cohomology group and the space of Jacobi forms in terms of the critical values of partial $L$-functions of Jacobi cusp forms.
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert-Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field $Q(sqrt{5})$. In those examples, w