Do you want to publish a course? Click here

Calculating a function of a matrix with a real spectrum

68   0   0.0 ( 0 )
 Added by Vitalii Kurbatov
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Let $T$ be a square matrix with a real spectrum, and let $f$ be an analytic function. The problem of the approximate calculation of $f(T)$ is discussed. Applying the Schur triangular decomposition and the reordering, one can assume that $T$ is triangular and its diagonal entries $t_{ii}$ are arranged in increasing order. To avoid calculations using the differences $t_{ii}-t_{jj}$ with close (including equal) $t_{ii}$ and $t_{jj}$, it is proposed to represent $T$ in a block form and calculate the two main block diagonals using interpolating polynomials. The rest of the $f(T)$ entries can be calculated using the Parlett recurrence algorithm. It is also proposed to perform scalar operations (such as the building of interpolating polynomials) with an enlarged number of decimal digits.



rate research

Read More

Let $A$ be a square complex matrix; $z_1$, ..., $z_{N}inmathbb C$ be arbitrary (possibly repetitive) points of interpolation; $f$ be an analytic function defined on a neighborhood of the convex hull of the union of the spectrum $sigma(A)$ of the matrix $A$ and the points $z_1$, ..., $z_{N}$; and the rational function $r=frac uv$ (with the degree of the numerator $u$ less than $N$) interpolates $f$ at these points (counted according to their multiplicities). Under these assumptions estimates of the kind $$ biglVert f(A)-r(A)bigrVertle max_{tin[0,1];muintext{convex hull}{z_1,z_{2},dots,z_{N}}}bigglVertOmega(A)[v(A)]^{-1} frac{bigl(vfbigr)^{{(N)}} bigl((1-t)mumathbf1+tAbigr)}{N!}biggrVert, $$ where $Omega(z)=prod_{k=1}^N(z-z_k)$, are proposed. As an example illustrating the accuracy of such estimates, an approximation of the impulse response of a dynamic system obtained using the reduced-order Arnoldi method is considered, the actual accuracy of the approximation is compared with the estimate based on this paper.
The trace of a matrix function f(A), most notably of the matrix inverse, can be estimated stochastically using samples< x,f(A)x> if the components of the random vectors x obey an appropriate probability distribution. However such a Monte-Carlo sampling suffers from the fact that the accuracy depends quadratically of the samples to use, thus making higher precision estimation very costly. In this paper we suggest and investigate a multilevel Monte-Carlo approach which uses a multigrid hierarchy to stochastically estimate the trace. This results in a substantial reduction of the variance, so that higher precision can be obtained at much less effort. We illustrate this for the trace of the inverse using three different classes of matrices.
We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(mathbf{A}) mathbf{b}$ when $mathbf{A}$ is a Hermitian matrix and $mathbf{b}$ is a given mathbftor. Assuming that $f : mathbb{C} rightarrow mathbb{C}$ is piecewise analytic, we give a framework, based on the Cauchy integral formula, which can be used to derive {em a priori} and emph{a posteriori} error bounds for Lanczos-FA in terms of the error of Lanczos used to solve linear systems. Unlike many error bounds for Lanczos-FA, these bounds account for fine-grained properties of the spectrum of $mathbf{A}$, such as clustered or isolated eigenvalues. Our results are derived assuming exact arithmetic, but we show that they are easily extended to finite precision computations using existing theory about the Lanczos algorithm in finite precision. We also provide generalized bounds for the Lanczos method used to approximate quadratic forms $mathbf{b}^textsf{H} f(mathbf{A}) mathbf{b}$, and demonstrate the effectiveness of our bounds with numerical experiments.
Localized collocation methods based on radial basis functions (RBFs) for elliptic problems appear to be non-robust in the presence of Neumann boundary conditions. In this paper we overcome this issue by formulating the RBF-generated finite difference method in a discrete least-squares setting instead. This allows us to prove high-order convergence under node refinement and to numerically verify that the least-squares formulation is more accurate and robust than the collocation formulation. The implementation effort for the modified algorithm is comparable to that for the collocation method.
We present a new fast algorithm for computing the Boys function using nonlinear approximation of the integrand via exponentials. The resulting algorithms evaluate the Boys function with real and complex valued arguments and are competitive with previously developed algorithms for the same purpose.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا