No Arabic abstract
This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts. Given a passage and the corresponding question, a participating system is expected to choose the correct answer from five candidates of abstract concepts in a cloze-style machine reading comprehension setup. Based on two typical definitions of abstractness, i.e., the imperceptibility and nonspecificity, our task provides three subtasks to evaluate the participating models. Specifically, Subtask 1 aims to evaluate how well a system can model concepts that cannot be directly perceived in the physical world. Subtask 2 focuses on models ability in comprehending nonspecific concepts located high in a hypernym hierarchy given the context of a passage. Subtask 3 aims to provide some insights into models generalizability over the two types of abstractness. During the SemEval-2021 official evaluation period, we received 23 submissions to Subtask 1 and 28 to Subtask 2. The participating teams additionally made 29 submissions to Subtask 3. The leaderboard and competition website can be found at https://competitions.codalab.org/competitions/26153. The data and baseline code are available at https://github.com/boyuanzheng010/SemEval2021-Reading-Comprehension-of-Abstract-Meaning.
This paper presents our submitted system to SemEval 2021 Task 4: Reading Comprehension of Abstract Meaning. Our system uses a large pre-trained language model as the encoder and an additional dual multi-head co-attention layer to strengthen the relationship between passages and question-answer pairs, following the current state-of-the-art model DUMA. The main difference is that we stack the passage-question and question-passage attention modules instead of calculating parallelly to simulate re-considering process. We also add a layer normalization module to improve the performance of our model. Furthermore, to incorporate our known knowledge about abstract concepts, we retrieve the definitions of candidate answers from WordNet and feed them to the model as extra inputs. Our system, called WordNet-enhanced DUal Multi-head Co-Attention (WN-DUMA), achieves 86.67% and 89.99% accuracy on the official blind test set of subtask 1 and subtask 2 respectively.
SemEval task 4 aims to find a proper option from multiple candidates to resolve the task of machine reading comprehension. Most existing approaches propose to concat question and option together to form a context-aware model. However, we argue that straightforward concatenation can only provide a coarse-grained context for the MRC task, ignoring the specific positions of the option relative to the question. In this paper, we propose a novel MRC model by filling options into the question to produce a fine-grained context (defined as summary) which can better reveal the relationship between option and question. We conduct a series of experiments on the given dataset, and the results show that our approach outperforms other counterparts to a large extent.
We present the results of the Machine Reading for Question Answering (MRQA) 2019 shared task on evaluating the generalization capabilities of reading comprehension systems. In this task, we adapted and unified 18 distinct question answering datasets into the same format. Among them, six datasets were made available for training, six datasets were made available for development, and the final six were hidden for final evaluation. Ten teams submitted systems, which explored various ideas including data sampling, multi-task learning, adversarial training and ensembling. The best system achieved an average F1 score of 72.5 on the 12 held-out datasets, 10.7 absolute points higher than our initial baseline based on BERT.
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT itself performs competitively, our feature engineering-based model helps in extreme cases, eg. separating instances of easy and neutral difficulty. Our handcrafted features comprise a breadth of lexical, semantic, syntactic, and novel phonological measures. Visualizations of BERT attention maps offer insight into potential features that Transformers models may learn when fine-tuned for lexical complexity prediction. Our ensembled predictions score reasonably well for the single word subtask, and we demonstrate how they can be harnessed to perform well on the multi word expression subtask too.
This paper describes the participation of the team TwiSE in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely Sentiment Analysis in Twitter for which we implemented sentiment classification systems for subtasks A, B, C and D. Our approach consists of two steps. In the first step, we generate and validate diverse feature sets for twitter sentiment evaluation, inspired by the work of participants of previous editions of such challenges. In the second step, we focus on the optimization of the evaluation measures of the different subtasks. To this end, we examine different learning strategies by validating them on the data provided by the task organisers. For our final submissions we used an ensemble learning approach (stacked generalization) for Subtask A and single linear models for the rest of the subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14 for subtasks A, B, C and D respectively.footnote{We make the code available for research purposes at url{https://github.com/balikasg/SemEval2016-Twitter_Sentiment_Evaluation}.}