No Arabic abstract
Table-to-text generation refers to generating a descriptive text from a key-value table. Traditional autoregressive methods, though can generate text with high fluency, suffer from low coverage and poor faithfulness problems. To mitigate these problems, we propose a novel Skeleton-based two-stage method that combines both Autoregressive and Non-Autoregressive generations (SANA). Our approach includes: (1) skeleton generation with an autoregressive pointer network to select key tokens from the source table; (2) edit-based non-autoregressive generation model to produce texts via iterative insertion and deletion operations. By integrating hard constraints from the skeleton, the non-autoregressive model improves the generations coverage over the source table and thus enhances its faithfulness. We conduct automatic and human evaluations on both WikiPerson and WikiBio datasets. Experimental results demonstrate that our method outperforms the previous state-of-the-art methods in both automatic and human evaluation, especially on coverage and faithfulness. In particular, we achieve PARENT-T recall of 99.47 in WikiPerson, improving over the existing best results by more than 10 points.
In open domain table-to-text generation, we notice that the unfaithful generation usually contains hallucinated content which can not be aligned to any input table record. We thus try to evaluate the generation faithfulness with two entity-centric metrics: table record coverage and the ratio of hallucinated entities in text, both of which are shown to have strong agreement with human judgements. Then based on these metrics, we quantitatively analyze the correlation between training data quality and generation fidelity which indicates the potential usage of entity information in faithful generation. Motivated by these findings, we propose two methods for faithful generation: 1) augmented training by incorporating the auxiliary entity information, including both an augmented plan-based model and an unsupervised model and 2) training instance selection based on faithfulness ranking. We show these approaches improve generation fidelity in both full dataset setting and few shot learning settings by both automatic and human evaluations.
We address the issue of hallucination in data-to-text generation, i.e., reducing the generation of text that is unsupported by the source. We conjecture that hallucination can be caused by an encoder-decoder model generating content phrases without attending to the source; so we propose a confidence score to ensure that the model attends to the source whenever necessary, as well as a variational Bayes training framework that can learn the score from data. Experiments on the WikiBio (Lebretet al., 2016) dataset show that our approach is more faithful to the source than existing state-of-the-art approaches, according to both PARENT score (Dhingra et al., 2019) and human evaluation. We also report strong results on the WebNLG (Gardent et al., 2017) dataset.
Neural table-to-text generation models have achieved remarkable progress on an array of tasks. However, due to the data-hungry nature of neural models, their performances strongly rely on large-scale training examples, limiting their applicability in real-world applications. To address this, we propose a new framework: Prototype-to-Generate (P2G), for table-to-text generation under the few-shot scenario. The proposed framework utilizes the retrieved prototypes, which are jointly selected by an IR system and a novel prototype selector to help the model bridging the structural gap between tables and texts. Experimental results on three benchmark datasets with three state-of-the-art models demonstrate that the proposed framework significantly improves the model performance across various evaluation metrics.
In this paper, we present a generative model to generate a natural language sentence describing a table region, e.g., a row. The model maps a row from a table to a continuous vector and then generates a natural language sentence by leveraging the semantics of a table. To deal with rare words appearing in a table, we develop a flexible copying mechanism that selectively replicates contents from the table in the output sequence. Extensive experiments demonstrate the accuracy of the model and the power of the copying mechanism. On two synthetic datasets, WIKIBIO and SIMPLEQUESTIONS, our model improves the current state-of-the-art BLEU-4 score from 34.70 to 40.26 and from 33.32 to 39.12, respectively. Furthermore, we introduce an open-domain dataset WIKITABLETEXT including 13,318 explanatory sentences for 4,962 tables. Our model achieves a BLEU-4 score of 38.23, which outperforms template based and language model based approaches.
Generating coherent and cohesive long-form texts is a challenging task. Previous works relied on large amounts of human-generated texts to train neural language models. However, few attempted to explicitly improve neural language models from the perspectives of coherence and cohesion. In this work, we propose a new neural language model that is equipped with two neural discriminators which provide feedback signals at the levels of sentence (cohesion) and paragraph (coherence). Our model is trained using a simple yet efficient variant of policy gradient, called negative-critical sequence training, which is proposed to eliminate the need of training a separate critic for estimating baseline. Results demonstrate the effectiveness of our approach, showing improvements over the strong baseline -- recurrent attention-based bidirectional MLE-trained neural language model.