Do you want to publish a course? Click here

Table-to-Text: Describing Table Region with Natural Language

261   0   0.0 ( 0 )
 Added by Junwei Bao
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we present a generative model to generate a natural language sentence describing a table region, e.g., a row. The model maps a row from a table to a continuous vector and then generates a natural language sentence by leveraging the semantics of a table. To deal with rare words appearing in a table, we develop a flexible copying mechanism that selectively replicates contents from the table in the output sequence. Extensive experiments demonstrate the accuracy of the model and the power of the copying mechanism. On two synthetic datasets, WIKIBIO and SIMPLEQUESTIONS, our model improves the current state-of-the-art BLEU-4 score from 34.70 to 40.26 and from 33.32 to 39.12, respectively. Furthermore, we introduce an open-domain dataset WIKITABLETEXT including 13,318 explanatory sentences for 4,962 tables. Our model achieves a BLEU-4 score of 38.23, which outperforms template based and language model based approaches.



rate research

Read More

Neural table-to-text generation models have achieved remarkable progress on an array of tasks. However, due to the data-hungry nature of neural models, their performances strongly rely on large-scale training examples, limiting their applicability in real-world applications. To address this, we propose a new framework: Prototype-to-Generate (P2G), for table-to-text generation under the few-shot scenario. The proposed framework utilizes the retrieved prototypes, which are jointly selected by an IR system and a novel prototype selector to help the model bridging the structural gap between tables and texts. Experimental results on three benchmark datasets with three state-of-the-art models demonstrate that the proposed framework significantly improves the model performance across various evaluation metrics.
Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge existing methods by hierarchical indexing, as well as implicit relationships of calculation and semantics. This work presents HiTab, a free and open dataset to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports (analyses) and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) both target sentences for NLG and questions for QA are revised from original, meaningful, and diverse descriptive sentences authored by analysts and professions of reports. (3) to reveal complex numerical reasoning in statistical analyses, we provide fine-grained annotations of entity and quantity alignment. HiTab provides 10,686 QA pairs and descriptive sentences with well-annotated quantity and entity alignment on 3,597 tables with broad coverage of table hierarchies and numerical reasoning types. Targeting hierarchical structure, we devise a novel hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting complex numerical reasoning, we propose partially supervised training given annotations of entity and quantity alignment, which helps models to largely reduce spurious predictions in the QA task. In the NLG task, we find that entity and quantity alignment also helps NLG models to generate better results in a conditional generation setting. Experiment results of state-of-the-art baselines suggest that this dataset presents a strong challenge and a valuable benchmark for future research.
142 - Xueqing Wu , Jiacheng Zhang , 2021
We study a new problem setting of information extraction (IE), referred to as text-to-table, which can be viewed as an inverse problem of the well-studied table-to-text. In text-to-table, given a text, one creates a table or several tables expressing the main content of the text, while the model is learned from text-table pair data. The problem setting differs from those of the existing methods for IE. First, the extraction can be carried out from long texts to large tables with complex structures. Second, the extraction is entirely data-driven, and there is no need to explicitly define the schemas. As far as we know, there has been no previous work that studies the problem. In this work, we formalize text-to-table as a sequence-to-sequence (seq2seq) problem. We first employ a seq2seq model fine-tuned from a pre-trained language model to perform the task. We also develop a new method within the seq2seq approach, exploiting two additional techniques in table generation: table constraint and table relation embeddings. We make use of four existing table-to-text datasets in our experiments on text-to-table. Experimental results show that the vanilla seq2seq model can outperform the baseline methods of using relation extraction and named entity extraction. The results also show that our method can further boost the performances of the vanilla seq2seq model. We further discuss the main challenges of the proposed task. The code and data will be made publicly available.
In open domain table-to-text generation, we notice that the unfaithful generation usually contains hallucinated content which can not be aligned to any input table record. We thus try to evaluate the generation faithfulness with two entity-centric metrics: table record coverage and the ratio of hallucinated entities in text, both of which are shown to have strong agreement with human judgements. Then based on these metrics, we quantitatively analyze the correlation between training data quality and generation fidelity which indicates the potential usage of entity information in faithful generation. Motivated by these findings, we propose two methods for faithful generation: 1) augmented training by incorporating the auxiliary entity information, including both an augmented plan-based model and an unsupervised model and 2) training instance selection based on faithfulness ranking. We show these approaches improve generation fidelity in both full dataset setting and few shot learning settings by both automatic and human evaluations.
Single-table text-to-SQL aims to transform a natural language question into a SQL query according to one single table. Recent work has made promising progress on this task by pre-trained language models and a multi-submodule framework. However, zero-shot table, that is, the invisible table in the training set, is currently the most critical bottleneck restricting the application of existing approaches to real-world scenarios. Although some work has utilized auxiliary tasks to help handle zero-shot tables, expensive extra manual annotation limits their practicality. In this paper, we propose a new approach for the zero-shot text-to-SQL task which does not rely on any additional manual annotations. Our approach consists of two parts. First, we propose a new model that leverages the abundant information of table content to help establish the mapping between questions and zero-shot tables. Further, we propose a simple but efficient meta-learning strategy to train our model. The strategy utilizes the two-step gradient update to force the model to learn a generalization ability towards zero-shot tables. We conduct extensive experiments on a public open-domain text-to-SQL dataset WikiSQL and a domain-specific dataset ESQL. Compared to existing approaches using the same pre-trained model, our approach achieves significant improvements on both datasets. Compared to the larger pre-trained model and the tabular-specific pre-trained model, our approach is still competitive. More importantly, on the zero-shot subsets of both the datasets, our approach further increases the improvements.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا