As a continuation of the study (in arXiv:2102.07696 and arXiv:2104.12625) of strong-coupling expansion of non-planar corrections in $mathcal N=2$ 4d superconformal models we consider two special theories with gauge groups $SU(N)$ and $Sp(2N)$. They contain $N$-independent numbers of hypermultiplets in rank 2 antisymmetric and fundamental representations and are planar-equivalent to the corresponding $mathcal N=4$ SYM theories. These $mathcal N=2$ theories can be realised on a system of $N$ D3-branes with a finite number of D7-branes and O7-plane; the dual string theories should be particular orientifolds of $AdS_5times S^5$ superstring. Starting with the localization matrix model representation for the $mathcal N=2$ partition function on $S^4$ we find exact differential relations between the $1/N$ terms in the corresponding free energy $F$ and the $frac{1}{2}$-BPS Wilson loop expectation value $langlemathcal Wrangle$ and also compute their large t Hooft coupling ($lambda gg 1$) expansions. The structure of these expansions is different from the previously studied models without fundamental hypermultiplets. In the more tractable $Sp(2N)$ case we find an exact resummed expression for the leading strong coupling terms at each order in the $1/N$ expansion. We also determine the exponentially suppressed at large $lambda$ contributions to the non-planar corrections to $F$ and $langlemathcal Wrangle$ and comment on their resurgence properties. We discuss dual string theory interpretation of these strong coupling expansions.
We complete the program of 2012.15792 about perturbative approaches for $mathcal{N}=2$ superconformal quiver theories in four dimensions. We consider several classes of observables in presence of Wilson loops, and we evaluate them with the help of supersymmetric localization. We compute Wilson loop vacuum expectation values, correlators of multiple coincident Wilson loops and one-point functions of chiral operators in presence of them acting as superconformal defects. We extend this analysis to the most general case considering chiral operators and multiple Wilson loops scattered in all the possible ways among the vector multiplets of the quiver. Finally, we identify twisted and untwisted observables which probe the orbifold of $AdS_5times S^5$ with the aim of testing possible holographic perspectives of quiver theories in $mathcal{N}=2$.
In $mathcal N geq 2$ superconformal Chern-Simons-matter theories we construct the infinite family of Bogomolnyi-Prasad-Sommerfield (BPS) Wilson loops featured by constant parametric couplings to scalar and fermion matter, including both line Wilson loops in Minkowski spacetime and circle Wilson loops in Euclidean space. We find that the connection of the most general BPS Wilson loop cannot be decomposed in terms of double-node connections. Moreover, if the quiver contains triangles, it cannot be interpreted as a supermatrix inside a superalgebra. However, for particular choices of the parameters it reduces to the well-known connections of 1/6 BPS Wilson loops in Aharony-Bergman-Jafferis-Maldacena (ABJM) theory and 1/4 BPS Wilson loops in $mathcal N = 4$ orbifold ABJM theory. In the particular case of $mathcal N = 2$ orbifold ABJM theory we identify the gravity duals of a subset of operators. We investigate the cohomological equivalence of fermionic and bosonic BPS Wilson loops at quantum level by studying their expectation values, and find strong evidence that the cohomological equivalence holds quantum mechanically, at framing one. Finally, we discuss a stronger formulation of the cohomological equivalence, which implies non-trivial identities for correlation functions of composite operators in the defect CFT defined on the Wilson contour and allows to make novel predictions on the corresponding unknown integrals that call for a confirmation.
We consider $mathcal{N}=2$ superconformal quiver gauge theories in four dimensions and evaluate the chiral/anti-chiral correlators of single-trace operators. We show that it is convenient to form particular twisted and untwisted combinations of these operators suggested by the dual holographic description of the theory. The various twisted sectors are orthogonal and the correlators in each sector have always the same structure, as we show at the lowest orders in perturbation theory with Feynman diagrams. Using localization we then map the computation to a matrix model. In this way we are able to obtain formal expressions for the twisted correlators in the planar limit that are valid for all values of the t Hooft coupling $lambda$, and find that they are proportional to $1/lambda$ at strong coupling. We successfully test the correctness of our extrapolation against a direct numerical evaluation of the matrix model and argue that the $1/lambda$ behavior qualitatively agrees with the holographic description.
We consider a family of $mathcal{N}=2$ superconformal field theories in four dimensions, defined as $mathbb{Z}_q$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $mathcal{N}=1$ superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of $N$, exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $mathcal{N}=4$ only at high orders in perturbation theory.
Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular, we show that: 1) The partition function for arbitrary couplings can be constructed in terms of universal building blocks. 2) It can be computed in perturbation series, which converges uniformly for $|lambda_I|<pi^2$, where $lambda_I$ are the t Hooft coupling of the gauge groups. 3) The perturbation series for two-point functions can be explicitly computed to arbitrary orders. There is no universal effective coupling by which one can express them in terms of correlators of the $mathcal{N}=4$ theory. 4) One can define twisted and untwisted sector operators. At the perturbative orbifold point, when all the couplings are the same, the correlators of untwisted sector operators coincide with those of $mathcal{N}=4$ Super Yang-Mills theory. In the twisted sector, we find remarkable cancellations of a certain number of planar loops, determined by the conformal dimension of the operator.
M. Beccaria
,G. V. Dunne
,A.A. Tseytlin
.
(2021)
.
"Strong coupling expansion of free energy and BPS Wilson loop in $mathcal N=2$ superconformal models with fundamental hypermultiplets"
.
Matteo Beccaria
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا