No Arabic abstract
Estimating geometric elements such as depth, camera motion, and optical flow from images is an important part of the robots visual perception. We use a joint self-supervised method to estimate the three geometric elements. Depth network, optical flow network and camera motion network are independent of each other but are jointly optimized during training phase. Compared with independent training, joint training can make full use of the geometric relationship between geometric elements and provide dynamic and static information of the scene. In this paper, we improve the joint self-supervision method from three aspects: network structure, dynamic object segmentation, and geometric constraints. In terms of network structure, we apply the attention mechanism to the camera motion network, which helps to take advantage of the similarity of camera movement between frames. And according to attention mechanism in Transformer, we propose a plug-and-play convolutional attention module. In terms of dynamic object, according to the different influences of dynamic objects in the optical flow self-supervised framework and the depth-pose self-supervised framework, we propose a threshold algorithm to detect dynamic regions, and mask that in the loss function respectively. In terms of geometric constraints, we use traditional methods to estimate the fundamental matrix from the corresponding points to constrain the camera motion network. We demonstrate the effectiveness of our method on the KITTI dataset. Compared with other joint self-supervised methods, our method achieves state-of-the-art performance in the estimation of pose and optical flow, and the depth estimation has also achieved competitive results. Code will be available https://github.com/jianfenglihg/Unsupervised_geometry.
Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric image reconstruction. More significantly, due to lack of proper constraints, networks output scale-inconsistent results over different samples, i.e., the ego-motion network cannot provide full camera trajectories over a long video sequence because of the per-frame scale ambiguity. This paper tackles these challenges by proposing a geometry consistency loss for scale-consistent predictions and an induced self-discovered mask for handling moving objects and occlusions. Since we do not leverage multi-task learning like recent works, our framework is much simpler and more efficient. Comprehensive evaluation results demonstrate that our depth estimator achieves the state-of-the-art performance on the KITTI dataset. Moreover, we show that our ego-motion network is able to predict a globally scale-consistent camera trajectory for long video sequences, and the resulting visual odometry accuracy is competitive with the recent model that is trained using stereo videos. To the best of our knowledge, this is the first work to show that deep networks trained using unlabelled monocular videos can predict globally scale-consistent camera trajectories over a long video sequence.
A new unsupervised learning method of depth and ego-motion using multiple masks from monocular video is proposed in this paper. The depth estimation network and the ego-motion estimation network are trained according to the constraints of depth and ego-motion without truth values. The main contribution of our method is to carefully consider the occlusion of the pixels generated when the adjacent frames are projected to each other, and the blank problem generated in the projection target imaging plane. Two fine masks are designed to solve most of the image pixel mismatch caused by the movement of the camera. In addition, some relatively rare circumstances are considered, and repeated masking is proposed. To some extent, the method is to use a geometric relationship to filter the mismatched pixels for training, making unsupervised learning more efficient and accurate. The experiments on KITTI dataset show our method achieves good performance in terms of depth and ego-motion. The generalization capability of our method is demonstrated by training on the low-quality uncalibrated bike video dataset and evaluating on KITTI dataset, and the results are still good.
We propose a semantics-driven unsupervised learning approach for monocular depth and ego-motion estimation from videos in this paper. Recent unsupervised learning methods employ photometric errors between synthetic view and actual image as a supervision signal for training. In our method, we exploit semantic segmentation information to mitigate the effects of dynamic objects and occlusions in the scene, and to improve depth prediction performance by considering the correlation between depth and semantics. To avoid costly labeling process, we use noisy semantic segmentation results obtained by a pre-trained semantic segmentation network. In addition, we minimize the position error between the corresponding points of adjacent frames to utilize 3D spatial information. Experimental results on the KITTI dataset show that our method achieves good performance in both depth and ego-motion estimation tasks.
In this paper, we proposed an unsupervised learning method for estimating the optical flow between video frames, especially to solve the occlusion problem. Occlusion is caused by the movement of an object or the movement of the camera, defined as when certain pixels are visible in one video frame but not in adjacent frames. Due to the lack of pixel correspondence between frames in the occluded area, incorrect photometric loss calculation can mislead the optical flow training process. In the video sequence, we found that the occlusion in the forward ($trightarrow t+1$) and backward ($trightarrow t-1$) frame pairs are usually complementary. That is, pixels that are occluded in subsequent frames are often not occluded in the previous frame and vice versa. Therefore, by using this complementarity, a new weighted loss is proposed to solve the occlusion problem. In addition, we calculate gradients in multiple directions to provide richer supervision information. Our method achieves competitive optical flow accuracy compared to the baseline and some supervised methods on KITTI 2012 and 2015 benchmarks. This source code has been released at https://github.com/jianfenglihg/UnOpticalFlow.git.
Most of the deep-learning based depth and ego-motion networks have been designed for visible cameras. However, visible cameras heavily rely on the presence of an external light source. Therefore, it is challenging to use them under low-light conditions such as night scenes, tunnels, and other harsh conditions. A thermal camera is one solution to compensate for this problem because it detects Long Wave Infrared Radiation(LWIR) regardless of any external light sources. However, despite this advantage, both depth and ego-motion estimation research for the thermal camera are not actively explored until so far. In this paper, we propose an unsupervised learning method for the all-day depth and ego-motion estimation. The proposed method exploits multi-spectral consistency loss to gives complementary supervision for the networks by reconstructing visible and thermal images with the depth and pose estimated from thermal images. The networks trained with the proposed method robustly estimate the depth and pose from monocular thermal video under low-light and even zero-light conditions. To the best of our knowledge, this is the first work to simultaneously estimate both depth and ego-motion from the monocular thermal video in an unsupervised manner.