Do you want to publish a course? Click here

Maximizing Parallelism in Distributed Training for Huge Neural Networks

80   0   0.0 ( 0 )
 Added by Yang You
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The recent Natural Language Processing techniques have been refreshing the state-of-the-art performance at an incredible speed. Training huge language models is therefore an imperative demand in both industry and academy. However, huge language models impose challenges to both hardware and software. Graphical processing units (GPUs) are iterated frequently to meet the exploding demand, and a variety of ASICs like TPUs are spawned. However, there is still a tension between the fast growth of the extremely huge models and the fact that Moores law is approaching the end. To this end, many model parallelism techniques are proposed to distribute the model parameters to multiple devices, so as to alleviate the tension on both memory and computation. Our work is the first to introduce a 3-dimensional model parallelism for expediting huge language models. By reaching a perfect load balance, our approach presents smaller memory and communication cost than existing state-of-the-art 1-D and 2-D model parallelism. Our experiments on 64 TACCs V100 GPUs show that our 3-D parallelism outperforms the 1-D and 2-D parallelism with 2.32x and 1.57x speedup, respectively.



rate research

Read More

160 - Zhenkun Cai , Kaihao Ma , Xiao Yan 2020
A good parallelization strategy can significantly improve the efficiency or reduce the cost for the distributed training of deep neural networks (DNNs). Recently, several methods have been proposed to find efficient parallelization strategies but they all optimize a single objective (e.g., execution time, memory consumption) and produce only one strategy. We propose FT, an efficient algorithm that searches for an optimal set of parallelization strategies to allow the trade-off among different objectives. FT can adapt to different scenarios by minimizing the memory consumption when the number of devices is limited and fully utilize additional resources to reduce the execution time. For popular DNN models (e.g., vision, language), an in-depth analysis is conducted to understand the trade-offs among different objectives and their influence on the parallelization strategies. We also develop a user-friendly system, called TensorOpt, which allows users to run their distributed DNN training jobs without caring the details of parallelization strategies. Experimental results show that FT runs efficiently and provides accurate estimation of runtime costs, and TensorOpt is more flexible in adapting to resource availability compared with existing frameworks.
As numerous machine learning and other algorithms increase in complexity and data requirements, distributed computing becomes necessary to satisfy the growing computational and storage demands, because it enables parallel execution of smaller tasks that make up a large computing job. However, random fluctuations in task service times lead to straggling tasks with long execution times. Redundancy, in the form of task replication and erasure coding, provides diversity that allows a job to be completed when only a subset of redundant tasks is executed, thus removing the dependency on the straggling tasks. In situations of constrained resources (here a fixed number of parallel servers), increasing redundancy reduces the available resources for parallelism. In this paper, we characterize the diversity vs. parallelism trade-off and identify the optimal strategy, among replication, coding and splitting, which minimizes the expected job completion time. We consider three common service time distributions and establish three models that describe scaling of these distributions with the task size. We find that different distributions with different scaling models operate optimally at different levels of redundancy, and thus may require very different code rates.
Cloud GPU servers have become the de facto way for deep learning practitioners to train complex models on large-scale datasets. However, it is challenging to determine the appropriate cluster configuration---e.g., server type and number---for different training workloads while balancing the trade-offs in training time, cost, and model accuracy. Adding to the complexity is the potential to reduce the monetary cost by using cheaper, but revocable, transient GPU servers. In this work, we analyze distributed training performance under diverse cluster configurations using CM-DARE, a cloud-based measurement and training framework. Our empirical datasets include measurements from three GPU types, six geographic regions, twenty convolutional neural networks, and thousands of Google Cloud servers. We also demonstrate the feasibility of predicting training speed and overhead using regression-based models. Finally, we discuss potential use cases of our performance modeling such as detecting and mitigating performance bottlenecks.
Recurrent Neural Network (RNN) applications form a major class of AI-powered, low-latency data center workloads. Most execution models for RNN acceleration break computation graphs into BLAS kernels, which lead to significant inter-kernel data movement and resource underutilization. We show that by supporting more general loop constructs that capture design parameters in accelerators, it is possible to improve resource utilization using cross-kernel optimization without sacrificing programmability. Such abstraction level enables a design space search that can lead to efficient usage of on-chip resources on a spatial architecture across a range of problem sizes. We evaluate our optimization strategy on such abstraction with DeepBench using a configurable spatial accelerator. We demonstrate that this implementation provides a geometric speedup of 30x in performance, 1.6x in area, and 2x in power efficiency compared to a Tesla V100 GPU, and a geometric speedup of 2x compared to Microsoft Brainwave implementation on a Stratix 10 FPGA.
Mapping all the neurons in the brain requires automatic reconstruction of entire cells from volume electron microscopy data. The flood-filling network (FFN) architecture has demonstrated leading performance for segmenting structures from this data. However, the training of the network is computationally expensive. In order to reduce the training time, we implemented synchronous and data-parallel distributed training using the Horovod library, which is different from the asynchronous training scheme used in the published FFN code. We demonstrated that our distributed training scaled well up to 2048 Intel Knights Landing (KNL) nodes on the Theta supercomputer. Our trained models achieved similar level of inference performance, but took less training time compared to previous methods. Our study on the effects of different batch sizes on FFN training suggests ways to further improve training efficiency. Our findings on optimal learning rate and batch sizes agree with previous works.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا