Do you want to publish a course? Click here

Hierarchical microphase separation in non-conserved active mixtures

56   0   0.0 ( 0 )
 Added by Yuting Li Miss
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Non-equilibrium phase separating systems with reactions can break time-reversal symmetry (TRS) in two distinct ways. Firstly, the conservative and non-conservative sectors of the dynamics can be governed by incompatible free energies; when both sectors are present, this is the leading-order TRS violation, captured in its simplest form by Model AB. Second, the diffusive dynamics can break TRS in its own right. This happens only at higher order in the gradient expansion (but is the leading behaviour without reactions present) and is captured by Active Model B+ (AMB+). Each of the two mechanisms can lead to microphase separation, by quite different routes. Here we introduce Model AB+, for which both mechanisms are simultaneously present, and show that for slow reaction rates the system can undergo a new type of hierarchical microphase separation, whereby a continuous phase of fluid 1 contains large droplets of fluid 2 within which small droplets of fluid 1 are continuously created and then absorbed into the surrounding fluid-1 phase. In this state of bubbly microphase separation the small-scale 1-in-2 droplets arise by the conservative diffusive dynamics with the larger scale 2-in-1 structure governed by the nonconservative reactions.



rate research

Read More

We review the mechanism and consequences of the bridging-induced attraction, a generic biophysical principle which underpins some existing models for chromosome organisation in 3-D. This attraction, which was revealed in polymer physics-inspired computer simulations, is a generic clustering tendency arising in multivalent chromatin-binding proteins, and it provides an explanation for the biogenesis of nuclear bodies and transcription factories via microphase separation. Including post-translational modification reactions involving these multivalent proteins can account for the fast dynamics of the ensuing clusters, as is observed via microscopy and photobleaching experiments. The clusters found in simulations also give rise to chromatin domains which conform well with the observation of A/B compartments in HiC experiments.
Complex behavior in glassforming liquids is associated with formation of a mosaic of different structures. Using bond order parameters together with topological characteristics of the bond network, we show that in the mosaic of crystalline and amorphous clusters found in a 2D liquid the difference between structural sub- components translates into a difference between two coexisting phases. We suggest that the observed microphase separated mosaic is a 2D realization of what is usually invoked to explain special features found in 3D complex liquids. Conditions favoring mosaic stability are discussed; these conditions include a new type of critical behavior and long-range correlations between sub-component clusters.
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase we further find active-passive segregation, with rafts of passive particles in a sea of active particles. We find that phase separation from an initially disordered mixture can occur with as little as 15 percent of the particles being active. Finally, we show that a system prepared in a suitable fully segregated initial state reproducibly self-assembles an active corona which triggers crystallization of the passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of directed self-assembly using active particles.
As a result of nonequilibrium forces, purely repulsive self-propelled particles undergo macrophase separation between a dense and a dilute phase. We present a thorough study of the ordering kinetics of such motility-induced phase separation (MIPS) in active Brownian particles in two dimensions, and we show that it is generically accompanied by microphase separation. The growth of the dense phase follows a law akin to the one of liquid-gas phase separation. However, it is made of a mosaic of hexatic microdomains whose size does not coarsen indefinitely, leaving behind a network of extended topological defects from which microscopic dilute bubbles arise. The characteristic length of these finite-size structures increases with activity, independently of the choice of initial conditions.
We have evidenced by small angle neutron scattering at low temperature the coexistence of ferromagnetism (F) and antiferromagnetism (AF) in Pr0.67Ca0.33MnO3. The results are compared to those obtained in Pr0.80Ca0.20MnO3 and Pr0.63Ca0.37MnO3, which are F and AF respectively. Quantitative analysis shows that the small angle scattering is not due to a mesoscopic mixing but to a nanoscopic electronic and magnetic red cabbage structure, in which the ferromagnetic phase exists in form of thin layers in the AF matrix (stripes or 2D sheets).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا