No Arabic abstract
Determinantal point processes (DPPs) are well known models for diverse subset selection problems, including recommendation tasks, document summarization and image search. In this paper, we discuss a greedy deterministic adaptation of k-DPP. Deterministic algorithms are interesting for many applications, as they provide interpretability to the user by having no failure probability and always returning the same results. First, the ability of the method to yield low-rank approximations of kernel matrices is evaluated by comparing the accuracy of the Nystrom approximation on multiple datasets. Afterwards, we demonstrate the usefulness of the model on an image search task.
Progressive Neural Network Learning is a class of algorithms that incrementally construct the networks topology and optimize its parameters based on the training data. While this approach exempts the users from the manual task of designing and validating multiple network topologies, it often requires an enormous number of computations. In this paper, we propose to speed up this process by exploiting subsets of training data at each incremental training step. Three different sampling strategies for selecting the training samples according to different criteria are proposed and evaluated. We also propose to perform online hyperparameter selection during the network progression, which further reduces the overall training time. Experimental results in object, scene and face recognition problems demonstrate that the proposed approach speeds up the optimization procedure considerably while operating on par with the baseline approach exploiting the entire training set throughout the training process.
Deep Deterministic Policy Gradient (DDPG) has been proved to be a successful reinforcement learning (RL) algorithm for continuous control tasks. However, DDPG still suffers from data insufficiency and training inefficiency, especially in computationally complex environments. In this paper, we propose Asynchronous Episodic DDPG (AE-DDPG), as an expansion of DDPG, which can achieve more effective learning with less training time required. First, we design a modified scheme for data collection in an asynchronous fashion. Generally, for asynchronous RL algorithms, sample efficiency or/and training stability diminish as the degree of parallelism increases. We consider this problem from the perspectives of both data generation and data utilization. In detail, we re-design experience replay by introducing the idea of episodic control so that the agent can latch on good trajectories rapidly. In addition, we also inject a new type of noise in action space to enrich the exploration behaviors. Experiments demonstrate that our AE-DDPG achieves higher rewards and requires less time consuming than most popular RL algorithms in Learning to Run task which has a computationally complex environment. Not limited to the control tasks in computationally complex environments, AE-DDPG also achieves higher rewards and 2- to 4-fold improvement in sample efficiency on average compared to other variants of DDPG in MuJoCo environments. Furthermore, we verify the effectiveness of each proposed technique component through abundant ablation study.
Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.
This paper introduces two simple techniques to improve off-policy Reinforcement Learning (RL) algorithms. First, we formulate off-policy RL as a stochastic proximal point iteration. The target network plays the role of the variable of optimization and the value network computes the proximal operator. Second, we exploits the two value functions commonly employed in state-of-the-art off-policy algorithms to provide an improved action value estimate through bootstrapping with limited increase of computational resources. Further, we demonstrate significant performance improvement over state-of-the-art algorithms on standard continuous-control RL benchmarks.
In this paper, we investigate the impact of diverse user preference on learning under the stochastic multi-armed bandit (MAB) framework. We aim to show that when the user preferences are sufficiently diverse and each arm can be optimal for certain users, the O(log T) regret incurred by exploring the sub-optimal arms under the standard stochastic MAB setting can be reduced to a constant. Our intuition is that to achieve sub-linear regret, the number of times an optimal arm being pulled should scale linearly in time; when all arms are optimal for certain users and pulled frequently, the estimated arm statistics can quickly converge to their true values, thus reducing the need of exploration dramatically. We cast the problem into a stochastic linear bandits model, where both the users preferences and the state of arms are modeled as {independent and identical distributed (i.i.d)} d-dimensional random vectors. After receiving the user preference vector at the beginning of each time slot, the learner pulls an arm and receives a reward as the linear product of the preference vector and the arm state vector. We also assume that the state of the pulled arm is revealed to the learner once its pulled. We propose a Weighted Upper Confidence Bound (W-UCB) algorithm and show that it can achieve a constant regret when the user preferences are sufficiently diverse. The performance of W-UCB under general setups is also completely characterized and validated with synthetic data.