Do you want to publish a course? Click here

Asynchronous Episodic Deep Deterministic Policy Gradient: Towards Continuous Control in Computationally Complex Environments

119   0   0.0 ( 0 )
 Added by Zhizheng Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep Deterministic Policy Gradient (DDPG) has been proved to be a successful reinforcement learning (RL) algorithm for continuous control tasks. However, DDPG still suffers from data insufficiency and training inefficiency, especially in computationally complex environments. In this paper, we propose Asynchronous Episodic DDPG (AE-DDPG), as an expansion of DDPG, which can achieve more effective learning with less training time required. First, we design a modified scheme for data collection in an asynchronous fashion. Generally, for asynchronous RL algorithms, sample efficiency or/and training stability diminish as the degree of parallelism increases. We consider this problem from the perspectives of both data generation and data utilization. In detail, we re-design experience replay by introducing the idea of episodic control so that the agent can latch on good trajectories rapidly. In addition, we also inject a new type of noise in action space to enrich the exploration behaviors. Experiments demonstrate that our AE-DDPG achieves higher rewards and requires less time consuming than most popular RL algorithms in Learning to Run task which has a computationally complex environment. Not limited to the control tasks in computationally complex environments, AE-DDPG also achieves higher rewards and 2- to 4-fold improvement in sample efficiency on average compared to other variants of DDPG in MuJoCo environments. Furthermore, we verify the effectiveness of each proposed technique component through abundant ablation study.



rate research

Read More

This paper introduces two simple techniques to improve off-policy Reinforcement Learning (RL) algorithms. First, we formulate off-policy RL as a stochastic proximal point iteration. The target network plays the role of the variable of optimization and the value network computes the proximal operator. Second, we exploits the two value functions commonly employed in state-of-the-art off-policy algorithms to provide an improved action value estimate through bootstrapping with limited increase of computational resources. Further, we demonstrate significant performance improvement over state-of-the-art algorithms on standard continuous-control RL benchmarks.
56 - Noe Casas 2017
Traffic light timing optimization is still an active line of research despite the wealth of scientific literature on the topic, and the problem remains unsolved for any non-toy scenario. One of the key issues with traffic light optimization is the large scale of the input information that is available for the controlling agent, namely all the traffic data that is continually sampled by the traffic detectors that cover the urban network. This issue has in the past forced researchers to focus on agents that work on localized parts of the traffic network, typically on individual intersections, and to coordinate every individual agent in a multi-agent setup. In order to overcome the large scale of the available state information, we propose to rely on the ability of deep Learning approaches to handle large input spaces, in the form of Deep Deterministic Policy Gradient (DDPG) algorithm. We performed several experiments with a range of models, from the very simple one (one intersection) to the more complex one (a big city section).
Deterministic Policy Gradient (DPG) removes a level of randomness from standard randomized-action Policy Gradient (PG), and demonstrates substantial empirical success for tackling complex dynamic problems involving Markov decision processes. At the same time, though, DPG loses its ability to learn in a model-free (i.e., actor-only) fashion, frequently necessitating the use of critics in order to obtain consistent estimates of the associated policy-reward gradient. In this work, we introduce Zeroth-order Deterministic Policy Gradient (ZDPG), which approximates policy-reward gradients via two-point stochastic evaluations of the $Q$-function, constructed by properly designed low-dimensional action-space perturbations. Exploiting the idea of random horizon rollouts for obtaining unbiased estimates of the $Q$-function, ZDPG lifts the dependence on critics and restores true model-free policy learning, while enjoying built-in and provable algorithmic stability. Additionally, we present new finite sample complexity bounds for ZDPG, which improve upon existing results by up to two orders of magnitude. Our findings are supported by several numerical experiments, which showcase the effectiveness of ZDPG in a practical setting, and its advantages over both PG and Baseline PG.
Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.
We observe that several existing policy gradient methods (such as vanilla policy gradient, PPO, A2C) may suffer from overly large gradients when the current policy is close to deterministic (even in some very simple environments), leading to an unstable training process. To address this issue, we propose a new method, called emph{target distribution learning} (TDL), for policy improvement in reinforcement learning. TDL alternates between proposing a target distribution and training the policy network to approach the target distribution. TDL is more effective in constraining the KL divergence between updated policies, and hence leads to more stable policy improvements over iterations. Our experiments show that TDL algorithms perform comparably to (or better than) state-of-the-art algorithms for most continuous control tasks in the MuJoCo environment while being more stable in training.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا