Do you want to publish a course? Click here

CausCF: Causal Collaborative Filtering for RecommendationEffect Estimation

83   0   0.0 ( 0 )
 Added by Xu Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

To improve user experience and profits of corporations, modern industrial recommender systems usually aim to select the items that are most likely to be interacted with (e.g., clicks and purchases). However, they overlook the fact that users may purchase the items even without recommendations. To select these effective items, it is essential to estimate the causal effect of recommendations. The real effective items are the ones which can contribute to purchase probability uplift. Nevertheless, it is difficult to obtain the real causal effect since we can only recommend or not recommend an item to a user at one time. Furthermore, previous works usually rely on the randomized controlled trial~(RCT) experiment to evaluate their performance. However, it is usually not practicable in the recommendation scenario due to its unavailable time consuming. To tackle these problems, in this paper, we propose a causal collaborative filtering~(CausCF) method inspired by the widely adopted collaborative filtering~(CF) technique. It is based on the idea that similar users not only have a similar taste on items, but also have similar treatment effect under recommendations. CausCF extends the classical matrix factorization to the tensor factorization with three dimensions -- user, item, and treatment. Furthermore, we also employs regression discontinuity design (RDD) to evaluate the precision of the estimated causal effects from different models. With the testable assumptions, RDD analysis can provide an unbiased causal conclusion without RCT experiments. Through dedicated experiments on both the public datasets and the industrial application, we demonstrate the effectiveness of our proposed CausCF on the causal effect estimation and ranking performance improvement.



rate research

Read More

Recommender systems are important and valuable tools for many personalized services. Collaborative Filtering (CF) algorithms -- among others -- are fundamental algorithms driving the underlying mechanism of personalized recommendation. Many of the traditional CF algorithms are designed based on the fundamental idea of mining or learning correlative patterns from data for matching, including memory-based methods such as user/item-based CF as well as learning-based methods such as matrix factorization and deep learning models. However, advancing from correlative learning to causal learning is an important problem, because causal/counterfactual modeling can help us to think outside of the observational data for user modeling and personalization. In this paper, we propose Causal Collaborative Filtering (CCF) -- a general framework for modeling causality in collaborative filtering and recommendation. We first provide a unified causal view of CF and mathematically show that many of the traditional CF algorithms are actually special cases of CCF under simplified causal graphs. We then propose a conditional intervention approach for $do$-calculus so that we can estimate the causal relations based on observational data. Finally, we further propose a general counterfactual constrained learning framework for estimating the user-item preferences. Experiments are conducted on two types of real-world datasets -- traditional and randomized trial data -- and results show that our framework can improve the recommendation performance of many CF algorithms.
User-item interactions in recommendations can be naturally de-noted as a user-item bipartite graph. Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based C methods have been proposed to advance recommender systems. These methods often make recommendations based on the learned user and item embeddings. However, we found that they do not perform well wit sparse user-item graphs which are quite common in real-world recommendations. Therefore, in this work, we introduce a novel perspective to build GNN-based CF methods for recommendations which leads to the proposed framework Localized Graph Collaborative Filtering (LGCF). One key advantage of LGCF is that it does not need to learn embeddings for each user and item, which is challenging in sparse scenarios. Alternatively, LGCF aims at encoding useful CF information into a localized graph and making recommendations based on such graph. Extensive experiments on various datasets validate the effectiveness of LGCF especially in sparse scenarios. Furthermore, empirical results demonstrate that LGCF provides complementary information to the embedding-based CF model which can be utilized to boost recommendation performance.
A growing proportion of human interactions are digitized on social media platforms and subjected to algorithmic decision-making, and it has become increasingly important to ensure fair treatment from these algorithms. In this work, we investigate gender bias in collaborative-filtering recommender systems trained on social media data. We develop neural fair collaborative filtering (NFCF), a practical framework for mitigating gender bias in recommending sensitive items (e.g. jobs, academic concentrations, or courses of study) using a pre-training and fine-tuning approach to neural collaborative filtering, augmented with bias correction techniques. We show the utility of our methods for gender de-biased career and college major recommendations on the MovieLens dataset and a Facebook dataset, respectively, and achieve better performance and fairer behavior than several state-of-the-art models.
This paper proposes implicit CF-NADE, a neural autoregressive model for collaborative filtering tasks using implicit feedback ( e.g. click, watch, browse behaviors). We first convert a users implicit feedback into a like vector and a confidence vector, and then model the probability of the like vector, weighted by the confidence vector. The training objective of implicit CF-NADE is to maximize a weighted negative log-likelihood. We test the performance of implicit CF-NADE on a dataset collected from a popular digital TV streaming service. More specifically, in the experiments, we describe how to convert watch counts into implicit relative rating, and feed into implicit CF-NADE. Then we compare the performance of implicit CF-NADE model with the popular implicit matrix factorization approach. Experimental results show that implicit CF-NADE significantly outperforms the baseline.
Latent factor models play a dominant role among recommendation techniques. However, most of the existing latent factor models assume both historical interactions and embedding dimensions are independent of each other, and thus regrettably ignore the high-order interaction information among historical interactions and embedding dimensions. In this paper, we propose a novel latent factor model called COMET (COnvolutional diMEnsion inTeraction), which simultaneously model the high-order interaction patterns among historical interactions and embedding dimensions. To be specific, COMET stacks the embeddings of historical interactions horizontally at first, which results in two embedding maps. In this way, internal interactions and dimensional interactions can be exploited by convolutional neural networks with kernels of different sizes simultaneously. A fully-connected multi-layer perceptron is then applied to obtain two interaction vectors. Lastly, the representations of users and items are enriched by the learnt interaction vectors, which can further be used to produce the final prediction. Extensive experiments and ablation studies on various public implicit feedback datasets clearly demonstrate the effectiveness and the rationality of our proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا