Do you want to publish a course? Click here

The large inner Micromegas modules for the Atlas Muon Spectrometer Upgrade: construction, quality control and characterization

92   0   0.0 ( 0 )
 Added by Esther Ferrer Ribas
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The steadily increasing luminosity of the LHC requires an upgrade with high-rate and high-resolution detector technology for the inner end cap of the ATLAS muon spectrometer: the New Small Wheels (NSW). In order to achieve the goal of precision tracking at a hit rate of about 15 kHz/cm$^2$ at the inner radius of the NSW, large area Micromegas quadruplets with 100,microns spatial resolution per plane have been produced. % IRFU, from the CEA research center of Saclay, is responsible for the production and validation of LM1 Micromegas modules. The construction, production, qualification and validation of the largest Micromegas detectors ever built are reported here. Performance results under cosmic muon characterisation will also be discussed.



rate research

Read More

84 - T. Alexopoulos 2018
A full-size prototype of a Micromegas precision tracking chamber for the upgrade of the ATLAS detector at the LHC Collider has been built between October 2015 and April 2016. This paper describes in detail the procedures used in constructing the single modules of the chamber in various INFN laboratories and the final assembly at the Laboratori Nazionali di Frascati (LNF). Results of the chamber exposure to the CERN SPS/H8 beam line in June 2016 are also presented. The performances achieved in the construction and the results of the test beam are compared with the requirements, which are imposed by the severe environment during the data-taking of the LHC foreseen for the next years.
The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.
255 - W. Zhang , C. Chen , D. Gong 2021
We present the characterization and quality control test of a gigabit cable receiver ASIC prototype, GBCR2, for the ATLAS Inner Tracker pixel detector upgrade. GBCR2 equalizes and retimes the uplink electrical signals from RD53B through a 6 m Twinax AWG34 cable to lpGBT. GBCR2 also pre-emphasizes downlink command signals through the same electrical connection from lpGBT to RD53B. GBCR2 has seven uplink channels each at 1.28 Gbps and two downlink channels each at 160 Mbps. The prototype is fabricated in a 65 nm CMOS process. The characterization of GBCR2 has been demonstrated that the total jitter of the output signal is 129.1 ps (peak-peak) in the non-retiming mode or 79.3 ps (peak-peak) in the retiming mode for the uplink channel and meets the requirements of lpGBT. The total power consumption of all uplink channels is 87.0 mW in the non-retiming mode and 101.4 mW in the retiming mode, below the specification of 174 mW. The two downlink channels consume less than 53 mW. A quality control test procedure is proposed and 169 prototype chips are tested. The yield is about 97.0%.
The second phase of the T2K experiment is expected to start data taking in autumn 2022. An upgrade of the Near Detector (ND280) is under development and includes the construction of two new Time Projection Chambers called High-Angle TPC (HA-TPC). The two endplates of these TPCs will be paved with eight Micromegas type charge readout modules. The Micromegas detector charge amplification structure uses a resistive anode to spread the charges over several pads to improve the space point resolution. This innovative technique is combined with the bulk-Micromegas technology to compose the Encapsulated Resistive Anode Micromegas detector. A prototype has been designed, built and exposed to an electron beam at the DESY II test beam facility. The data have been used to characterize the charge spreading and to produce a RC map. Spatial resolution better than 600 $mu$m and energy resolution better than 9% are obtained for all incident angles. These performances fulfil the requirements for the upgrade of the ND280 TPC.
109 - C. Chen , D. Gong , D. Guo 2020
We present a gigabit transceiver prototype Application Specific Integrated Circuit (ASIC), GBCR, for the ATLAS Inner Tracker (ITk) Pixel detector readout upgrade. GBCR is designed in a 65-nm CMOS technology and consists of four upstream receiver channels, a downstream transmitter channel, and an Inter-Integrated Circuit (I2C) slave. The upstream channels receive the data at 5.12 Gbps passing through 5-meter 34-American Wire Gauge (AWG) Twin-axial (Twinax) cables, equalize them, retime them with a recovered clock, and then drive an optical transmitter. The downstream channel receives the data at 2.56 Gbps from an optical receiver and drives the cable as same as the upstream channels. The jitter of the upstream channel output is measured to be 35 ps (peak-peak) when the Clock-Data Recovery (CDR) module is turned on and the jitter of the downstream channel output after the cable is 138 ps (peak-peak). The power consumption of each upstream channel is 72 mW when the CDR module is turned on and the downstream channel consumes 27 mW. GBCR survives the total ionizing dose of 200 kGy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا