Do you want to publish a course? Click here

Construction techniques and performances of a full-size prototype Micromegas chamber for the ATLAS muon spectrometer upgrade

85   0   0.0 ( 0 )
 Added by Giada Mancini
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A full-size prototype of a Micromegas precision tracking chamber for the upgrade of the ATLAS detector at the LHC Collider has been built between October 2015 and April 2016. This paper describes in detail the procedures used in constructing the single modules of the chamber in various INFN laboratories and the final assembly at the Laboratori Nazionali di Frascati (LNF). Results of the chamber exposure to the CERN SPS/H8 beam line in June 2016 are also presented. The performances achieved in the construction and the results of the test beam are compared with the requirements, which are imposed by the severe environment during the data-taking of the LHC foreseen for the next years.



rate research

Read More

The instantaneous luminosity of the Large Hadron Collider at CERN will be increased up to a factor of five with respect to the present design value by undergoing an extensive upgrade program over the coming decade. The most important upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward regions with the so-called New Small Wheels (NSWs). The NSWs will be installed during the LHC long shutdown in 2018/19. Small-Strip Thin Gap Chamber (sTGC) detectors are designed to provide fast trigger and high precision muon tracking under the high luminosity LHC conditions. To validate the design, a full-size prototype sTGC detector of approximately 1.2 $times$ $1.0, mathrm{m}^2$ consisting of four gaps has been constructed. Each gap provides pad, strip and wire readouts. The sTGC intrinsic spatial resolution has been measured in a $32, mathrm{GeV}$ pion beam test at Fermilab. At perpendicular incidence angle, single gap position resolutions of about $50,mathrm{mu m}$ have been obtained, uniform along the sTGC strip and perpendicular wire directions, well within design requirements. Pad readout measurements have been performed in a $130, mathrm{GeV}$ muon beam test at CERN. The transition region between readout pads has been found to be $4,mathrm{mm}$, and the pads have been found to be fully efficient.
The steadily increasing luminosity of the LHC requires an upgrade with high-rate and high-resolution detector technology for the inner end cap of the ATLAS muon spectrometer: the New Small Wheels (NSW). In order to achieve the goal of precision tracking at a hit rate of about 15 kHz/cm$^2$ at the inner radius of the NSW, large area Micromegas quadruplets with 100,microns spatial resolution per plane have been produced. % IRFU, from the CEA research center of Saclay, is responsible for the production and validation of LM1 Micromegas modules. The construction, production, qualification and validation of the largest Micromegas detectors ever built are reported here. Performance results under cosmic muon characterisation will also be discussed.
173 - D. Abbaneo , S. Bally , H. Postema 2010
In view of a possible extension of the forward CMS muon detector system and future LHC luminosity upgrades, Micro-Pattern Gas Detectors (MPGDs) are an appealing technology. They can simultaneously provide precision tracking and fast trigger information, as well as sufficiently fine segmentation to cope with high particle rates in the high-eta region at LHC and its future upgrades. We report on the design and construction of a full-size prototype for the CMS endcap system, the largest Triple-GEM detector built to-date. We present details on the 3D modeling of the detector geometry, the implementation of the readout strips and electronics, and the detector assembly procedure.
A new small-diameter Monitored Drift Tube (sMDT) chamber has been developed for the muon spectrometer of the ATLAS experiment to handle the higher collision rates expected at the CERN High Luminosity Large Hadron Collider (HL-LHC). This paper presents measurements of the tracking resolution and hit efficiency of two prototype sMDT chambers constructed at the University of Michigan. Using cosmic-ray muons the sMDT tracking resolution of 103.7$pm8.1$ textmu m was measured for one chamber and 101.8$pm$7.8 textmu m for the other, compared with a design resolution of 106 textmu m. A further tracking resolution improvement to 83.4$pm$7.8 textmu m was obtained by using new high-gain readout electronics which will be added for HL-LHC. An average tracking efficiency of (98.5$pm$0.2)% was found for both chambers. The methodology used to determine the detector tracking resolution and efficiency, including reconstruction of sMDT data and a Geant4 simulation of the test chamber, is presented in detail.
227 - M.Poli Lener , M.Bazzi , G.Corradi 2013
A large number of high-energy and heavy-ion experiments successfully used Time Projection Chamber (TPC) as central tracker and particle identification detector. However, the performance requirements on TPC for new high-rate particle experiments greatly exceed the abilities of traditional TPC read out by multi-wire proportional chamber (MWPC). Gas Electron Multiplier (GEM) detector has great potential to improve TPC performances when used as amplification device. In this paper we present the R&D activity on a new GEM-based TPC detector built as a prototype for the inner part for AMADEUS, a new experimental proposal at the DAFNE collider at Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negative kaons interactions in nuclei. In order to evaluate the GEM-TPC performances, a 10x10 cm2 prototype with a drift gap up to 15 cm has been realized. The detector was tested at the pM1 beam facility of the Paul Scherrer Institut (PSI) with low momentum pions and protons, without magnetic field. Drift properties of argonisobutane gas mixtures are measured and compared withMagboltz prediction. Detection efficiency and spatial resolution as a function of a large number of parameters, such as the gas gain, the drift field, the front-end electronic threshold and particle momentum, are illustrated and discussed. Particle identification capability and the measurement of the energy resolution in isobutane-based gas mixture are also reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا