Do you want to publish a course? Click here

AdvParams: An Active DNN Intellectual Property Protection Technique via Adversarial Perturbation Based Parameter Encryption

352   0   0.0 ( 0 )
 Added by Mingfu Xue
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A well-trained DNN model can be regarded as an intellectual property (IP) of the model owner. To date, many DNN IP protection methods have been proposed, but most of them are watermarking based verification methods where model owners can only verify their ownership passively after the copyright of DNN models has been infringed. In this paper, we propose an effective framework to actively protect the DNN IP from infringement. Specifically, we encrypt the DNN models parameters by perturbing them with well-crafted adversarial perturbations. With the encrypted parameters, the accuracy of the DNN model drops significantly, which can prevent malicious infringers from using the model. After the encryption, the positions of encrypted parameters and the values of the added adversarial perturbations form a secret key. Authorized user can use the secret key to decrypt the model. Compared with the watermarking methods which only passively verify the ownership after the infringement occurs, the proposed method can prevent infringement in advance. Moreover, compared with most of the existing active DNN IP protection methods, the proposed method does not require additional training process of the model, which introduces low computational overhead. Experimental results show that, after the encryption, the test accuracy of the model drops by 80.65%, 81.16%, and 87.91% on Fashion-MNIST, CIFAR-10, and GTSRB, respectively. Moreover, the proposed method only needs to encrypt an extremely low number of parameters, and the proportion of the encrypted parameters of all the models parameters is as low as 0.000205%. The experimental results also indicate that, the proposed method is robust against model fine-tuning attack and model pruning attack. Moreover, for the adaptive attack where attackers know the detailed steps of the proposed method, the proposed method is also demonstrated to be robust.



rate research

Read More

226 - Mingfu Xue , Shichang Sun , Can He 2021
The training of Deep Neural Networks (DNN) is costly, thus DNN can be considered as the intellectual properties (IP) of model owners. To date, most of the existing protection works focus on verifying the ownership after the DNN model is stolen, which cannot resist piracy in advance. To this end, we propose an active DNN IP protection method based on adversarial examples against DNN piracy, named ActiveGuard. ActiveGuard aims to achieve authorization control and users fingerprints management through adversarial examples, and can provide ownership verification. Specifically, ActiveGuard exploits the elaborate adversarial examples as users fingerprints to distinguish authorized users from unauthorized users. Legitimate users can enter fingerprints into DNN for identity authentication and authorized usage, while unauthorized users will obtain poor model performance due to an additional control layer. In addition, ActiveGuard enables the model owner to embed a watermark into the weights of DNN. When the DNN is illegally pirated, the model owner can extract the embedded watermark and perform ownership verification. Experimental results show that, for authorized users, the test accuracy of LeNet-5 and Wide Residual Network (WRN) models are 99.15% and 91.46%, respectively, while for unauthorized users, the test accuracy of the two DNNs are only 8.92% (LeNet-5) and 10% (WRN), respectively. Besides, each authorized user can pass the fingerprint authentication with a high success rate (up to 100%). For ownership verification, the embedded watermark can be successfully extracted, while the normal performance of the DNN model will not be affected. Further, ActiveGuard is demonstrated to be robust against fingerprint forgery attack, model fine-tuning attack and pruning attack.
Despite the tremendous success, deep neural networks are exposed to serious IP infringement risks. Given a target deep model, if the attacker knows its full information, it can be easily stolen by fine-tuning. Even if only its output is accessible, a surrogate model can be trained through student-teacher learning by generating many input-output training pairs. Therefore, deep model IP protection is important and necessary. However, it is still seriously under-researched. In this work, we propose a new model watermarking framework for protecting deep networks trained for low-level computer vision or image processing tasks. Specifically, a special task-agnostic barrier is added after the target model, which embeds a unified and invisible watermark into its outputs. When the attacker trains one surrogate model by using the input-output pairs of the barrier target model, the hidden watermark will be learned and extracted afterwards. To enable watermarks from binary bits to high-resolution images, a deep invisible watermarking mechanism is designed. By jointly training the target model and watermark embedding, the extra barrier can even be absorbed into the target model. Through extensive experiments, we demonstrate the robustness of the proposed framework, which can resist attacks with different network structures and objective functions.
Deep learning techniques have made tremendous progress in a variety of challenging tasks, such as image recognition and machine translation, during the past decade. Training deep neural networks is computationally expensive and requires both human and intellectual resources. Therefore, it is necessary to protect the intellectual property of the model and externally verify the ownership of the model. However, previous studies either fail to defend against the evasion attack or have not explicitly dealt with fraudulent claims of ownership by adversaries. Furthermore, they can not establish a clear association between the model and the creators identity. To fill these gaps, in this paper, we propose a novel intellectual property protection (IPP) framework based on blind-watermark for watermarking deep neural networks that meet the requirements of security and feasibility. Our framework accepts ordinary samples and the exclusive logo as inputs, outputting newly generated samples as watermarks, which are almost indistinguishable from the origin, and infuses these watermarks into DNN models by assigning specific labels, leaving the backdoor as the basis for our copyright claim. We evaluated our IPP framework on two benchmark datasets and 15 popular deep learning models. The results show that our framework successfully verifies the ownership of all the models without a noticeable impact on their primary task. Most importantly, we are the first to successfully design and implement a blind-watermark based framework, which can achieve state-of-art performances on undetectability against evasion attack and unforgeability against fraudulent claims of ownership. Further, our framework shows remarkable robustness and establishes a clear association between the model and the authors identity.
This paper presents a high-level circuit obfuscation technique to prevent the theft of intellectual property (IP) of integrated circuits. In particular, our technique protects a class of circuits that relies on constant multiplications, such as filters and neural networks, where the constants themselves are the IP to be protected. By making use of decoy constants and a key-based scheme, a reverse engineer adversary at an untrusted foundry is rendered incapable of discerning true constants from decoy constants. The time-multiplexed constant multiplication (TMCM) block of such circuits, which realizes the multiplication of an input variable by a constant at a time, is considered as our case study for obfuscation. Furthermore, two TMCM design architectures are taken into account; an implementation using a multiplier and a multiplierless shift-adds implementation. Optimization methods are also applied to reduce the hardware complexity of these architectures. The well-known satisfiability (SAT) and automatic test pattern generation (ATPG) attacks are used to determine the vulnerability of the obfuscated designs. It is observed that the proposed technique incurs small overheads in area, power, and delay that are comparable to the hardware complexity of prominent logic locking methods. Yet, the advantage of our approach is in the insight that constants -- instead of arbitrary circuit nodes -- become key-protected.
Ever since Machine Learning as a Service (MLaaS) emerges as a viable business that utilizes deep learning models to generate lucrative revenue, Intellectual Property Right (IPR) has become a major concern because these deep learning models can easily be replicated, shared, and re-distributed by any unauthorized third parties. To the best of our knowledge, one of the prominent deep learning models - Generative Adversarial Networks (GANs) which has been widely used to create photorealistic image are totally unprotected despite the existence of pioneering IPR protection methodology for Convolutional Neural Networks (CNNs). This paper therefore presents a complete protection framework in both black-box and white-box settings to enforce IPR protection on GANs. Empirically, we show that the proposed method does not compromise the original GANs performance (i.e. image generation, image super-resolution, style transfer), and at the same time, it is able to withstand both removal and ambiguity attacks against embedded watermarks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا