Do you want to publish a course? Click here

ActiveGuard: An Active DNN IP Protection Technique via Adversarial Examples

227   0   0.0 ( 0 )
 Added by Mingfu Xue
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The training of Deep Neural Networks (DNN) is costly, thus DNN can be considered as the intellectual properties (IP) of model owners. To date, most of the existing protection works focus on verifying the ownership after the DNN model is stolen, which cannot resist piracy in advance. To this end, we propose an active DNN IP protection method based on adversarial examples against DNN piracy, named ActiveGuard. ActiveGuard aims to achieve authorization control and users fingerprints management through adversarial examples, and can provide ownership verification. Specifically, ActiveGuard exploits the elaborate adversarial examples as users fingerprints to distinguish authorized users from unauthorized users. Legitimate users can enter fingerprints into DNN for identity authentication and authorized usage, while unauthorized users will obtain poor model performance due to an additional control layer. In addition, ActiveGuard enables the model owner to embed a watermark into the weights of DNN. When the DNN is illegally pirated, the model owner can extract the embedded watermark and perform ownership verification. Experimental results show that, for authorized users, the test accuracy of LeNet-5 and Wide Residual Network (WRN) models are 99.15% and 91.46%, respectively, while for unauthorized users, the test accuracy of the two DNNs are only 8.92% (LeNet-5) and 10% (WRN), respectively. Besides, each authorized user can pass the fingerprint authentication with a high success rate (up to 100%). For ownership verification, the embedded watermark can be successfully extracted, while the normal performance of the DNN model will not be affected. Further, ActiveGuard is demonstrated to be robust against fingerprint forgery attack, model fine-tuning attack and pruning attack.



rate research

Read More

351 - Mingfu Xue , Zhiyu Wu , Jian Wang 2021
A well-trained DNN model can be regarded as an intellectual property (IP) of the model owner. To date, many DNN IP protection methods have been proposed, but most of them are watermarking based verification methods where model owners can only verify their ownership passively after the copyright of DNN models has been infringed. In this paper, we propose an effective framework to actively protect the DNN IP from infringement. Specifically, we encrypt the DNN models parameters by perturbing them with well-crafted adversarial perturbations. With the encrypted parameters, the accuracy of the DNN model drops significantly, which can prevent malicious infringers from using the model. After the encryption, the positions of encrypted parameters and the values of the added adversarial perturbations form a secret key. Authorized user can use the secret key to decrypt the model. Compared with the watermarking methods which only passively verify the ownership after the infringement occurs, the proposed method can prevent infringement in advance. Moreover, compared with most of the existing active DNN IP protection methods, the proposed method does not require additional training process of the model, which introduces low computational overhead. Experimental results show that, after the encryption, the test accuracy of the model drops by 80.65%, 81.16%, and 87.91% on Fashion-MNIST, CIFAR-10, and GTSRB, respectively. Moreover, the proposed method only needs to encrypt an extremely low number of parameters, and the proportion of the encrypted parameters of all the models parameters is as low as 0.000205%. The experimental results also indicate that, the proposed method is robust against model fine-tuning attack and model pruning attack. Moreover, for the adaptive attack where attackers know the detailed steps of the proposed method, the proposed method is also demonstrated to be robust.
This paper presents a DNN bottleneck reinforcement scheme to alleviate the vulnerability of Deep Neural Networks (DNN) against adversarial attacks. Typical DNN classifiers encode the input image into a compressed latent representation more suitable for inference. This information bottleneck makes a trade-off between the image-specific structure and class-specific information in an image. By reinforcing the former while maintaining the latter, any redundant information, be it adversarial or not, should be removed from the latent representation. Hence, this paper proposes to jointly train an auto-encoder (AE) sharing the same encoding weights with the visual classifier. In order to reinforce the information bottleneck, we introduce the multi-scale low-pass objective and multi-scale high-frequency communication for better frequency steering in the network. Unlike existing approaches, our scheme is the first reforming defense per se which keeps the classifier structure untouched without appending any pre-processing head and is trained with clean images only. Extensive experiments on MNIST, CIFAR-10 and ImageNet demonstrate the strong defense of our method against various adversarial attacks.
368 - Huming Qiu , Hua Ma , Zhi Zhang 2021
Though deep neural network models exhibit outstanding performance for various applications, their large model size and extensive floating-point operations render deployment on mobile computing platforms a major challenge, and, in particular, on Internet of Things devices. One appealing solution is model quantization that reduces the model size and uses integer operations commonly supported by microcontrollers . To this end, a 1-bit quantized DNN model or deep binary neural network maximizes the memory efficiency, where each parameter in a BNN model has only 1-bit. In this paper, we propose a reconfigurable BNN (RBNN) to further amplify the memory efficiency for resource-constrained IoT devices. Generally, the RBNN can be reconfigured on demand to achieve any one of M (M>1) distinct tasks with the same parameter set, thus only a single task determines the memory requirements. In other words, the memory utilization is improved by times M. Our extensive experiments corroborate that up to seven commonly used tasks can co-exist (the value of M can be larger). These tasks with a varying number of classes have no or negligible accuracy drop-off on three binarized popular DNN architectures including VGG, ResNet, and ReActNet. The tasks span across different domains, e.g., computer vision and audio domains validated herein, with the prerequisite that the model architecture can serve those cross-domain tasks. To protect the intellectual property of an RBNN model, the reconfiguration can be controlled by both a user key and a device-unique root key generated by the intrinsic hardware fingerprint. By doing so, an RBNN model can only be used per paid user per authorized device, thus benefiting both the user and the model provider.
In this paper, we propose MgX, a near-zero overhead memory protection scheme for hardware accelerators. MgX minimizes the performance overhead of off-chip memory encryption and integrity verification by exploiting the application-specific aspect of accelerators. Accelerators tend to explicitly manage data movement between on-chip and off-chip memory, typically at an object granularity that is much larger than cache lines. Exploiting these accelerator-specific characteristics, MgX generates version numbers used in memory encryption and integrity verification only using on-chip state without storing them in memory, and also customizes the granularity of the memory protection to match the granularity used by the accelerator. To demonstrate the applicability of MgX, we present an in-depth study of MgX for deep neural network (DNN) and also describe implementations for H.264 video decoding and genome alignment. Experimental results show that applying MgX has less than 1% performance overhead for both DNN inference and training on state-of-the-art DNN architectures.
288 - Yingwei Li , Song Bai , Yuyin Zhou 2018
Recent development of adversarial attacks has proven that ensemble-based methods outperform traditional, non-ensemble ones in black-box attack. However, as it is computationally prohibitive to acquire a family of diverse models, these methods achieve inferior performance constrained by the limited number of models to be ensembled. In this paper, we propose Ghost Networks to improve the transferability of adversarial examples. The critical principle of ghost networks is to apply feature-level perturbations to an existing model to potentially create a huge set of diverse models. After that, models are subsequently fused by longitudinal ensemble. Extensive experimental results suggest that the number of networks is essential for improving the transferability of adversarial examples, but it is less necessary to independently train different networks and ensemble them in an intensive aggregation way. Instead, our work can be used as a computationally cheap and easily applied plug-in to improve adversarial approaches both in single-model and multi-model attack, compatible with residual and non-residual networks. By reproducing the NeurIPS 2017 adversarial competition, our method outperforms the No.1 attack submission by a large margin, demonstrating its effectiveness and efficiency. Code is available at https://github.com/LiYingwei/ghost-network.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا