Do you want to publish a course? Click here

Hopper: Modeling and Detecting Lateral Movement (Extended Report)

83   0   0.0 ( 0 )
 Added by Grant Ho
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In successful enterprise attacks, adversaries often need to gain access to additional machines beyond their initial point of compromise, a set of internal movements known as lateral movement. We present Hopper, a system for detecting lateral movement based on commonly available enterprise logs. Hopper constructs a graph of login activity among internal machines and then identifies suspicious sequences of loginsthat correspond to lateral movement. To understand the larger context of each login, Hopper employs an inference algorithm to identify the broader path(s) of movement that each login belongs to and the causal user responsible for performing a paths logins. Hopper then leverages this path inference algorithm, in conjunction with a set of detection rules and a new anomaly scoring algorithm, to surface the login paths most likely to reflect lateral movement. On a 15-month enterprise dataset consisting of over 780 million internal logins, Hop-per achieves a 94.5% detection rate across over 300 realistic attack scenarios, including one red team attack, while generating an average of <9 alerts per day. In contrast, to detect the same number of attacks, prior state-of-the-art systems would need to generate nearly 8x as many false positives.



rate research

Read More

We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise account to send phishing emails to other users, benefitting from both the implicit trust and the information in the hijacked users account. We develop a classifier that finds hundreds of real-world lateral phishing emails, while generating under four false positives per every one-million employee-sent emails. Drawing on the attacks we detect, as well as a corpus of user-reported incidents, we quantify the scale of lateral phishing, identify several thematic content and recipient targeting strategies that attackers follow, illuminate two types of sophisticated behaviors that attackers exhibit, and estimate the success rate of these attacks. Collectively, these results expand our mental models of the enterprise attacker and shed light on the current state of enterprise phishing attacks.
The proliferation of Internet of Things (IoT) is reshaping our lifestyle. With IoT sensors and devices communicating with each other via the Internet, people can customize automation rules to meet their needs. Unless carefully defined, however, such rules can easily become points of security failure as the number of devices and complexity of rules increase. Device owners may end up unintentionally providing access or revealing private information to unauthorized entities due to complex chain reactions among devices. Prior work on trigger-action programming either focuses on conflict resolution or usability issues, or fails to accurately and efficiently detect such attack chains. This paper explores security vulnerabilities when users have the freedom to customize automation rules using trigger-action programming. We define two broad classes of attack--privilege escalation and privacy leakage--and present a practical model-checking-based system called SAFECHAIN that detects hidden attack chains exploiting the combination of rules. Built upon existing model-checking techniques, SAFECHAIN identifies attack chains by modeling the IoT ecosystem as a Finite State Machine. To improve practicability, SAFECHAIN avoids the need to accurately model an environment by frequently re-checking the automation rules given the current states, and employs rule-aware optimizations to further reduce overhead. Our comparative analysis shows that SAFECHAIN can efficiently and accurately identify attack chains, and our prototype implementation of SAFECHAIN can verify 100 rules in less than one second with no false positives.
In the software design, protecting a computer system from a plethora of software attacks or malware in the wild has been increasingly important. One branch of research to detect the existence of attacks or malware, there has been much work focused on modeling the runtime behavior of a program. Stemming from the seminal work of Forrest et al., one of the main tools to model program behavior is system call sequences. Unfortunately, however, since mimicry attacks were proposed, program behavior models based solely on system call sequences could no longer ensure the security of systems and require additional information that comes with its own drawbacks. In this paper, we report our preliminary findings in our research to build a mimicry resilient program behavior model that has lesser drawbacks. We employ branch sequences to harden our program behavior model against mimicry attacks while employing hardware features for efficient extraction of such branch information during program runtime. In order to handle the large scale of branch sequences, we also employ LSTM, the de facto standard in deep learning based sequence modeling and report our preliminary experiments on its interaction with program branch sequences.
114 - B. Steffen , A. Seyfried 2009
For the planning of large pedestrian facilities, the movement of pedestrians in various situations has to be modelled. Many tools for pedestrian planning are based on cellular automata (CA), discrete in space and time, some use self driven pargticles (SDP), continuous in space and time. It is common experience that CA have problems with modelling sharp bends in wide corridors. They tend to move the pedestrians to the innermost lanes far too strongly, thereby reducing the capacity of the facility. With SDP, the problem seems to be less pronounced but still present. With CA, we compare the performance of two standard shortest distance based static floors on 90 and 180 degree bends with a newly defined one. For SDP, we demonstrate how variations in the modeling of the momentary destination of the agents influence trajectories and capacity.
We study the evolution of interacting groups of agents in two-dimensional geometries. We introduce a microscopic stochastic model that includes floor fields modeling the global flow of individual groups as well as local interaction rules. From this microscopic model we derive an analytically-tractable system of conservation laws that governs the evolution of the macroscopic densities. Numerical simulations show good agreement between the system of conservation laws and the microscopic model, though the latter is slightly more diffusive. We conclude by deriving second-order corrections to the system of conservation laws.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا