Do you want to publish a course? Click here

Minimal extensions of Tannakian categories in positive characteristic

50   0   0.0 ( 0 )
 Added by Shlomo Gelaki
 Publication date 2021
  fields
and research's language is English
 Authors Shlomo Gelaki




Ask ChatGPT about the research

We extend cite[Theorem 4.5]{DGNO} and cite[Theorem 4.22]{LKW} to positive characteristic (i.e., to the finite, not necessarily fusion, case). Namely, we prove that if $D$ is a finite non-degenerate braided tensor category over an algebraically closed field $k$ of characteristic $p>0$, containing a Tannakian Lagrangian subcategory $Rep(G)$, where $G$ is a finite $k$-group scheme, then $D$ is braided tensor equivalent to $Rep(D^{omega}(G))$ for some $omegain H^3(G,mathbb{G}_m)$, where $D^{omega}(G)$ denotes the twisted double of $G$ cite{G2}. We then prove that the group $mathcal{M}_{{rm ext}}(Rep(G))$ of minimal extensions of $Rep(G)$ is isomorphic to the group $H^3(G,mathbb{G}_m)$. In particular, we use cite{EG2,FP} to show that $mathcal{M}_{rm ext}(Rep(mu_p))=1$, $mathcal{M}_{rm ext}(Rep(alpha_p))$ is infinite, and if $O(Gamma)^*=u(g)$ for a semisimple restricted $p$-Lie algebra $g$, then $mathcal{M}_{rm ext}(Rep(Gamma))=1$ and $mathcal{M}_{rm ext}(Rep(Gammatimes alpha_p))cong g^{*(1)}$.



rate research

Read More

76 - Sonia Natale 2018
We study exact sequences of finite tensor categories of the form $Rep G to C to D$, where $G$ is a finite group. We show that, under suitable assumptions, there exists a group $Gamma$ and mutual actions by permutations $rhd: Gamma times G to G$ and $lhd: Gamma times G to Gamma$ that make $(G, Gamma)$ into matched pair of groups endowed with a natural crossed action on $D$ such that $C$ is equivalent to a certain associated crossed extension $D^{(G, Gamma)}$ of $D$. Dually, we show that an exact sequence of finite tensor categories $vect_G to C to D$ induces an $Aut(G)$-grading on $C$ whose neutral homogeneous component is a $(Z(G), Gamma)$-crossed extension of a tensor subcategory of $D$. As an application we prove that such extensions $C$ of $D$ are weakly group-theoretical fusion categories if and only if $D$ is a weakly group-theoretical fusion category. In particular, we conclude that every semisolvable semisimple Hopf algebra is weakly group-theoretical.
152 - Zhimin Liu , Shenglin Zhu 2021
Let $mathcal{C}$ be a finite braided multitensor category. Let $B$ be Majids automorphism braided group of $mathcal{C}$, then $B$ is a cocommutative Hopf algebra in $mathcal{C}$. We show that the center of $mathcal{C}$ is isomorphic to the category of left $B$-comodules in $mathcal{C}$, and the decomposition of $B$ into a direct sum of indecomposable $mathcal{C}$-subcoalgebras leads to a decomposition of $B$-$operatorname*{Comod}_{mathcal{C}}$ into a direct sum of indecomposable $mathcal{C}$-module subcategories. As an application, we present an explicit characterization of the structure of irreducible Yetter-Drinfeld modules over semisimple quasi-triangular weak Hopf algebras. Our results generalize those results on finite groups and on quasi-triangular Hopf algebras.
130 - Shlomo Gelaki 2016
We introduce and study the new notion of an {em exact factorization} $mathcal{B}=mathcal{A}bullet mathcal{C}$ of a fusion category $mathcal{B}$ into a product of two fusion subcategories $mathcal{A},mathcal{C}subseteq mathcal{B}$ of $mathcal{B}$. This is a categorical generalization of the well known notion of an exact factorization of a finite group into a product of two subgroups. We then relate exact factorizations of fusion categories to exact sequences of fusion categories with respect to an indecomposable module category, which was introduced and studied by P. Etingof and the author in cite{EG}. We also apply our results to study extensions of a group-theoretical fusion category by another one, provide some examples, and propose a few natural questions.
395 - L.-Y. Liu , S.-Q. Wang , Q.-S. Wu 2012
Suppose that $E=A[x;sigma,delta]$ is an Ore extension with $sigma$ an automorphism. It is proved that if $A$ is twisted Calabi-Yau of dimension $d$, then $E$ is twisted Calabi-Yau of dimension $d+1$. The relation between their Nakayama automorphisms is also studied. As an application, the Nakayama automorphisms of a class of 5-dimensional Artin-Schelter regular algebras are given explicitly.
177 - Andrew Schopieray 2021
This is a study of weakly integral braided fusion categories with elementary fusion rules to determine which possess nondegenerately braided extensions of theoretically minimal dimension, or equivalently in this case, which satisfy the minimal modular extension conjecture. We classify near-group braided fusion categories satisfying the minimal modular extension conjecture; the remaining Tambara-Yamagami braided fusion categories provide arbitrarily large families of braided fusion categories with identical fusion rules violating the minimal modular extension conjecture. These examples generalize to braided fusion categories with the fusion rules of the representation categories of extraspecial $p$-groups for any prime $p$, which possess a minimal modular extension only if they arise as the adjoint subcategory of a twisted double of an extraspecial $p$-group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا