Do you want to publish a course? Click here

Centers of Braided Tensor Categories

153   0   0.0 ( 0 )
 Added by Liu Zhimin
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $mathcal{C}$ be a finite braided multitensor category. Let $B$ be Majids automorphism braided group of $mathcal{C}$, then $B$ is a cocommutative Hopf algebra in $mathcal{C}$. We show that the center of $mathcal{C}$ is isomorphic to the category of left $B$-comodules in $mathcal{C}$, and the decomposition of $B$ into a direct sum of indecomposable $mathcal{C}$-subcoalgebras leads to a decomposition of $B$-$operatorname*{Comod}_{mathcal{C}}$ into a direct sum of indecomposable $mathcal{C}$-module subcategories. As an application, we present an explicit characterization of the structure of irreducible Yetter-Drinfeld modules over semisimple quasi-triangular weak Hopf algebras. Our results generalize those results on finite groups and on quasi-triangular Hopf algebras.



rate research

Read More

We classify finite pointed braided tensor categories admitting a fiber functor in terms of bilinear forms on symmetric Yetter-Drinfeld modules over abelian groups. We describe the groupoid formed by braided equivalences of such categories in terms of certain metric data, generalizing the well-known result of Joyal and Street for fusion categories. We study symmetric centers and ribbon structures of pointed braided tensor categories and examine their Drinfeld centers.
We classify various types of graded extensions of a finite braided tensor category $cal B$ in terms of its $2$-categorical Picard groups. In particular, we prove that braided extensions of $cal B$ by a finite group $A$ correspond to braided monoidal $2$-functors from $A$ to the braided $2$-categorical Picard group of $cal B$ (consisting of invertible central $cal B$-module categories). Such functors can be expressed in terms of the Eilnberg-Mac~Lane cohomology. We describe in detail braided $2$-categorical Picard groups of symmetric fusion categories and of pointed braided fusion categories.
We develop a method for generating the complete set of basic data under the torsorial actions of $H^2_{[rho]}(G,mathcal{A})$ and $H^3(G,U(1))$ on a $G$-crossed braided tensor category $mathcal{C}_G^times$, where $mathcal{A}$ is the set of invertible simple objects in the braided tensor category $mathcal{C}$. When $mathcal{C}$ is a modular tensor category, the $H^2_{[rho]}(G,mathcal{A})$ and $H^3(G,U(1))$ torsorial action gives a complete generation of possible $G$-crossed extensions, and hence provides a classification. This torsorial classification can be (partially) collapsed by relabeling equivalences that appear when computing the set of $G$-crossed braided extensions of $mathcal{C}$. The torsor method presented here reduces these redundancies by systematizing relabelings by $mathcal{A}$-valued $1$-cochains.
We consider the finite generation property for cohomology of a finite tensor category C, which requires that the self-extension algebra of the unit Ext*_C(1,1) is a finitely generated algebra and that, for each object V in C, the graded extension group Ext*_C(1,V) is a finitely generated module over the aforementioned algebra. We prove that this cohomological finiteness property is preserved under duality (with respect to exact module categories) and taking the Drinfeld center, under suitable restrictions on C. For example, the stated result holds when C is a braided tensor category of odd Frobenius-Perron dimension. By applying our general results, we obtain a number of new examples of finite tensor categories with finitely generated cohomology. In characteristic 0, we show that dynamical quantum groups at roots of unity have finitely generated cohomology. We also provide a new class of examples in finite characteristic which are constructed via infinitesimal group schemes.
Let $W$ be a finite dimensional purely odd supervector space over $mathbb{C}$, and let $sRep(W)$ be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup $W$. We show that the set of equivalence classes of finite non-degenerate braided tensor categories $C$ containing $sRep(W)$ as a Lagrangian subcategory is a torsor over the cyclic group $mathbb{Z}/16mathbb{Z}$. In particular, we obtain that there are $8$ non-equivalent such braided tensor categories $C$ which are integral and $8$ which are non-integral.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا