No Arabic abstract
Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25 ($sim$0.1 pc) scales. Here we present a measurement of the dust SED on larger spatial scales (map size 0.5-3 degrees or roughly 3-20pc), at somewhat lower resolution (120, corresponding to 0.25 pc at the distance of 400pc) using data from the Herschel satellite and Atacama Cosmology Telescope (ACT). We then extend these 120-scale investigations to other regions covered in the Herschel Gould Belt Survey (HGBS) specifically: the dense filaments in the southerly regions of Orion A and its tail; Orion B; and Serpens-S. Our dataset in aggregate covers approximately 10 deg$^2$, with continuum photometry spanning from 160 um to 3mm. These data also show an excess of emission at 3mm, though somewhat weaker (8.5% excess) compared to what is seen at higher resolution. More strikingly, we find that the enhancement is present even more strongly in the other filaments we targeted, with an average enhancement of 24.9% compared to a standard MBB fit to lambda $leq$2mm data. By applying this analysis to the other targeted regions we lay the groundwork for future high-resolution observations and analysis. Finally, we also consider a two-component dust model motivated by Planck results and an amorphous grain dust model. While both of these have been proposed to explain deviations in emission from a generic modified blackbody, we find that they do not perform significantly better than a MBB spectrum for fitting the SEDs.
We present new measurements of the dust emissivity index, beta, for the high-mass, star-forming OMC 2/3 filament. We combine 160-500 um data from Herschel with long-wavelength observations at 2 mm and fit the spectral energy distributions across a ~ 2 pc long, continuous section of OMC 2/3 at 15000 AU (0.08 pc) resolution. With these data, we measure beta and reconstruct simultaneously the filtered-out large-scale emission at 2 mm. We implement both variable and fixed values of beta, finding that beta = 1.7 - 1.8 provides the best fit across most of OMC 2/3. These beta values are consistent with a similar analysis carried out with filtered Herschel data. Thus, we show that beta values derived from spatial filtered emission maps agree well with those values from unfiltered data at the same resolution. Our results contradict the very low beta values (~ 0.9) previously measured in OMC 2/3 between 1.2 mm and 3.3 mm data, which we attribute to elevated fluxes in the 3.3 mm observations. Therefore, we find no evidence or rapid, extensive dust grain growth in OMC 2/3. Future studies with Herschel data and complementary ground-based long-wavelength data can apply our technique to obtain robust determinations of beta in nearby cold molecular clouds.
Aims. The process of gravitational fragmentation in the L1482 molecular filament of the California molecular cloud is studied by combining several complementary observations and physical estimates. We investigate the kinematic and dynamical states of this molecular filament and physical properties of several dozens of dense molecular clumps embedded therein. Methods. We present and compare molecular line emission observations of the J=2--1 and J=3--2 transitions of 12CO in this molecular complex, using the KOSMA 3-meter telescope. These observations are complemented with archival data observations and analyses of the 13CO J=1--0 emission obtained at the Purple Mountain Observatory 13.7-meter radio telescope at Delingha Station in QingHai Province of west China, as well as infrared emission maps from the Herschel Space Telescope online archive, obtained with the SPIRE and PACS cameras. Comparison of these complementary datasets allow for a comprehensive multi-wavelength analysis of the L1482 molecular filament. Results. We have identified 23 clumps along the molecular filament L1482 in the California molecular cloud. All these molecular clumps show supersonic non-thermal gas motions. While surprisingly similar in mass and size to the much better known Orion molecular cloud, the formation rate of high-mass stars appears to be suppressed in the California molecular cloud relative to that in the Orion molecular cloud based on the mass-radius threshold derived from the static Bonnor Ebert sphere. Our analysis suggests that these molecular filaments are thermally supercritical and molecular clumps may form by gravitational fragmentation along the filament. Instead of being static, these molecular clumps are most likely in processes of dynamic evolution.
The $rho$ Oph molecular cloud is one of the best examples of spinning dust emission, first detected by the Cosmic Background Imager (CBI). Here we present 4.5 arcmin observations with CBI 2 that confirm 31 GHz emission from $rho$ Oph W, the PDR exposed to B-type star HD 147889, and highlight the absence of signal from S1, the brightest IR nebula in the complex. In order to quantify an association with dust-related emission mechanisms, we calculated correlations at different angular resolutions between the 31 GHz map and proxies for the column density of IR emitters, dust radiance and optical depth templates. We found that the 31 GHz emission correlates best with the PAH column density tracers, while the correlation with the dust radiance improves when considering emission that is more extended (from the shorter baselines), suggesting that the angular resolution of the observations affects the correlation results. A proxy for the spinning dust emissivity reveals large variations within the complex, with a dynamic range of 25 at 3$sigma$ and a variation by a factor of at least 23, at 3$sigma$, between the peak in $rho$ Oph W and the location of S1, which means that environmental factors are responsible for boosting spinning dust emissivities locally.
Using N-body/gasdynamic simulations of a Milky Way-like galaxy we analyse a Kennicutt-Schmidt relation, $Sigma_{SFR} propto Sigma_{gas}^N$, at different spatial scales. We simulate synthetic observations in CO lines and UV band. We adopt the star formation rate defined in two ways: based on free fall collapse of a molecular cloud - $Sigma_{SFR, cl}$, and calculated by using a UV flux calibration - $Sigma_{SFR, UV}$. We study a KS relation for spatially smoothed maps with effective spatial resolution from molecular cloud scales to several hundred parsecs. We find that for spatially and kinematically resolved molecular clouds the $Sigma_{SFR, cl} propto Sigma_{rm gas}^N$ relation follows the power-law with index $N approx 1.4$. Using UV flux as SFR calibrator we confirm a systematic offset between the $Sigma_{rm UV}$ and $Sigma_{rm gas}$ distributions on scales compared to molecular cloud sizes. Degrading resolution of our simulated maps for surface densities of gas and star formation rates we establish that there is no relation $Sigma_{rm SFR, UV} - Sigma_{rm gas}$ below the resolution $sim 50$ pc. We find a transition range around scales $sim 50-120$ pc, where the power-law index $N$ increases from 0 to 1-1.8 and saturates for scales larger $sim 120$ pc. A value of the index saturated depends on a surface gas density threshold and it becomes steeper for higher $Sigma_{gas}$ threshold. Averaging over scales with size of $>150$ pc the power-law index $N$ equals 1.3-1.4 for surface gas density threshold $sim 5 M_odot$pc$^{-2}$. At scales $>120$ pc surface SFR densities determined by using CO data and UV flux, $Sigma_{rm SFR, UV}/Sigma_{rm SFR, cl}$, demonstrate a discrepancy about a factor of 3. We argue that this may be originated from overestimating (constant) values of conversion factor, star formation efficiency or UV calibration used in our analysis.
We report on a multi parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M33. A catalog of GMCs identifed in 12CO(J=3-2) was used to compile associated 12CO(J=1-0), dust, stellar mass and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components PC1 and PC2 which retain 75% of the information in the original dataset. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (<10Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower ISM content and star formation activity compared to intermediate age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ~10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt Kennicutt relation with the molecular gas term substituted by dust.