Do you want to publish a course? Click here

Binary black hole mergers: formation and populations

204   0   0.0 ( 0 )
 Added by Michela Mapelli
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the main physical processes that lead to the formation of stellar binary black holes (BBHs) and to their merger. BBHs can form from the isolated evolution of massive binary stars. The physics of core-collapse supernovae and the process of common envelope are two of the main sources of uncertainty about this formation channel. Alternatively, two black holes can form a binary by dynamical encounters in a dense star cluster. The dynamical formation channel leaves several imprints on the mass, spin and orbital properties of BBHs.



rate research

Read More

We investigate mass ejection from accretion disks formed in mergers of black holes (BHs) and neutron stars (NSs). The third observing run of the LIGO/Virgo interferometers provided BH-NS candidate events that yielded no electromagnetic (EM) counterparts. The broad range of disk configurations expected from BH-NS mergers motivates a thorough exploration of parameter space to improve EM signal predictions. Here we conduct 27 high-resolution, axisymmetric, long-term hydrodynamic simulations of the viscous evolution of BH accretion disks that include neutrino emission/absorption effects and post-processing with a nuclear reaction network. In the absence of magnetic fields, these simulations provide a lower-limit to the fraction of the initial disk mass ejected. We find a nearly linear inverse dependence of this fraction on disk compactness (BH mass over initial disk radius). The dependence is related to the fraction of the disk mass accreted before the outflow is launched, which depends on the disk position relative to the innermost stable circular orbit. We also characterize a trend of decreasing ejected fraction and decreasing lanthanide/actinide content with increasing disk mass at fixed BH mass. This trend results from a longer time to reach weak freezout and an increasingly dominant role of neutrino absorption at higher disk masses. We estimate the radioactive luminosity from the disk outflow alone available to power kilonovae over the range of configurations studied, finding a spread of two orders of magnitude. For most of the BH-NS parameter space, the disk outflow contribution is well below the kilonova mass upper limits for GW190814.
We introduce a new technique to search for gravitational wave events from compact binary mergers that produce a clear signal only in a single gravitational wave detector, and marginal signals in other detectors. Such a situation can arise when the detectors in a network have different sensitivities, or when sources have unfavorable sky locations or orientations. We start with a short list of loud single-detector triggers from regions of parameter space that are empirically unaffected by glitches (after applying signal-quality vetoes). For each of these triggers, we compute evidence for astrophysical origin from the rest of the detector network by coherently combining the likelihoods from all detectors and marginalizing over extrinsic geometric parameters. We report the discovery of two new binary black hole (BBH) mergers in the second observing run of Advanced LIGO and Virgo (O2), in addition to the ones that were reported in Abbott et al. (2018) and Venumadhav et al. (2019). We estimate that the two events have false alarm rates of one in 19 years (60 O2) and one in 11 years (36 O2). One of the events, GW170817A, has primary and secondary masses $m_1^{rm src} = 56_{-10}^{+16} , M_odot$ and $m_2^{rm src} = 40_{-11}^{+10} , M_odot$ in the source frame. The existence of GW170817A should be very informative about the theoretically predicted upper mass gap for stellar mass black holes. Its effective spin parameter is measured to be $chi_{rm eff} = 0.5 pm 0.2$, which is consistent with the tendency of the heavier detected BBH systems to have large and positive effective spin parameters. The other event, GWC170402, will be discussed thoroughly in future work.
Long gamma-ray bursts are associated with the core-collapse of massive, rapidly spinning stars. However, the believed efficient angular momentum transport in stellar interiors leads to predominantly slowly-spinning stellar cores. Here, we report on binary stellar evolution and population synthesis calculations, showing that tidal interactions in close binaries not only can explain the observed sub-population of spinning, merging binary black holes, but also lead to long gamma-ray bursts at the time of black-hole formation, with rates matching the empirical ones. We find that $approx$10% of the GWTC-2 reported binary black holes had a long gamma-ray burst associated with their formation, with GW190517 and GW190719 having a probability of $approx$85% and $approx$60%, respectively, being among them.
The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M_tot roughly as ~M_tot^beta, with beta >~ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGOs greater sensitivity to massive black hole binaries with M_tot <~ 80 solar masses. We find that for power-law BH mass functions dN/dM ~ M^-alpha with alpha <~ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ~5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.
We present a new method to extract statistical constraints on the progenitor properties and formation channels of individual gravitational-wave sources. Although many different models have been proposed to explain the binary black holes detected by the LIGO Scientific and Virgo Collaboration (LVC), formation through isolated binary evolution remains the best explored channel. Under the assumption of formation through binary evolution, we use the statistical wrapper dart_board coupled with the rapid binary evolution code COSMIC to model the progenitor of GW150914, the first gravitational-wave signal detected by the LVC. Our Bayesian method combines the likelihood generated from the gravitational-wave signal with a prior describing the population of stellar binaries, and the Universes star-formation and metallicity evolution. We find that the dominant evolutionary channel for GW150914 did not involve a common-envelope phase, but instead the system most probably (70%-90%) formed through stable mass transfer. This result is robust against variations of various model parameters, and it is reversed only when dynamical instability in binaries becomes more likely when a strict condition favoring common envelopes is adopted. Our analysis additionally provides a quantitative description of the progenitors relevant to each channel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا