Do you want to publish a course? Click here

DiSECt: A Differentiable Simulation Engine for Autonomous Robotic Cutting

329   0   0.0 ( 0 )
 Added by Eric Heiden
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Robotic cutting of soft materials is critical for applications such as food processing, household automation, and surgical manipulation. As in other areas of robotics, simulators can facilitate controller verification, policy learning, and dataset generation. Moreover, differentiable simulators can enable gradient-based optimization, which is invaluable for calibrating simulation parameters and optimizing controllers. In this work, we present DiSECt: the first differentiable simulator for cutting soft materials. The simulator augments the finite element method (FEM) with a continuous contact model based on signed distance fields (SDF), as well as a continuous damage model that inserts springs on opposite sides of the cutting plane and allows them to weaken until zero stiffness, enabling crack formation. Through various experiments, we evaluate the performance of the simulator. We first show that the simulator can be calibrated to match resultant forces and deformation fields from a state-of-the-art commercial solver and real-world cutting datasets, with generality across cutting velocities and object instances. We then show that Bayesian inference can be performed efficiently by leveraging the differentiability of the simulator, estimating posteriors over hundreds of parameters in a fraction of the time of derivative-free methods. Finally, we illustrate that control parameters in the simulation can be optimized to minimize cutting forces via lateral slicing motions. We publish videos and additional results on our project website at https://diff-cutting-sim.github.io.



rate research

Read More

We present Brax, an open source library for rigid body simulation with a focus on performance and parallelism on accelerators, written in JAX. We present results on a suite of tasks inspired by the existing reinforcement learning literature, but remade in our engine. Additionally, we provide reimplementations of PPO, SAC, ES, and direct policy optimization in JAX that compile alongside our environments, allowing the learning algorithm and the environment processing to occur on the same device, and to scale seamlessly on accelerators. Finally, we include notebooks that facilitate training of performant policies on common OpenAI Gym MuJoCo-like tasks in minutes.
In contrast to manned missions, the application of autonomous robots for space exploration missions decreases the safety concerns of the exploration missions while extending the exploration distance since returning transportation is not necessary for robotics missions. In addition, the employment of robots in these missions also decreases mission complexities and costs because there is no need for onboard life support systems: robots can withstand and operate in harsh conditions, for instance, extreme temperature, pressure, and radiation, where humans cannot survive. In this article, we introduce environments on Mars, review the existing autonomous driving techniques deployed on Earth, as well as explore technologies required to enable future commercial autonomous space robotic explorers. Last but not least, we also present that one of the urgent technical challenges for autonomous space explorers, namely, computing power onboard.
Elevator button recognition is considered an indispensable function for enabling the autonomous elevator operation of mobile robots. However, due to unfavorable image conditions and various image distortions, the recognition accuracy remains to be improved. In this paper, we present a novel algorithm that can autonomously correct perspective distortions of elevator panel images. The algorithm first leverages the Gaussian Mixture Model (GMM) to conduct a grid fitting process based on button recognition results, then utilizes the estimated grid centers as reference features to estimate camera motions for correcting perspective distortions. The algorithm performs on a single image autonomously and does not need explicit feature detection or feature matching procedure, which is much more robust to noises and outliers than traditional feature-based geometric approaches. To verify the effectiveness of the algorithm, we collect an elevator panel dataset of 50 images captured from different angles of view. Experimental results show that the proposed algorithm can accurately estimate camera motions and effectively remove perspective distortions.
Tactile sensing plays an important role in robotic perception and manipulation. To overcome the real-world limitations of data collection, simulating tactile response in virtual environment comes as a desire direction of robotic research. Most existing works model the tactile sensor as a rigid multi-body, which is incapable of reflecting the elastic property of the tactile sensor as well as characterizing the fine-grained physical interaction between two objects. In this paper, we propose Elastic Interaction of Particles (EIP), a novel framework for tactile emulation. At its core, EIP models the tactile sensor as a group of coordinated particles, and the elastic theory is applied to regulate the deformation of particles during the contact process. The implementation of EIP is conducted from scratch, without resorting to any existing physics engine. Experiments to verify the effectiveness of our method have been carried out on two applications: robotic perception with tactile data and 3D geometric reconstruction by tactile-visual fusion. It is possible to open up a new vein for robotic tactile simulation, and contribute to various downstream robotic tasks.
Autonomous robotic grasping plays an important role in intelligent robotics. However, how to help the robot grasp specific objects in object stacking scenes is still an open problem, because there are two main challenges for autonomous robots: (1)it is a comprehensive task to know what and how to grasp; (2)it is hard to deal with the situations in which the target is hidden or covered by other objects. In this paper, we propose a multi-task convolutional neural network for autonomous robotic grasping, which can help the robot find the target, make the plan for grasping and finally grasp the target step by step in object stacking scenes. We integrate vision-based robotic grasping detection and visual manipulation relationship reasoning in one single deep network and build the autonomous robotic grasping system. Experimental results demonstrate that with our model, Baxter robot can autonomously grasp the target with a success rate of 90.6%, 71.9% and 59.4% in object cluttered scenes, familiar stacking scenes and complex stacking scenes respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا