Do you want to publish a course? Click here

Practical Convex Formulation of Robust One-hidden-layer Neural Network Training

69   0   0.0 ( 0 )
 Added by Yatong Bai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent work has shown that the training of a one-hidden-layer, scalar-output fully-connected ReLU neural network can be reformulated as a finite-dimensional convex program. Unfortunately, the scale of such a convex program grows exponentially in data size. In this work, we prove that a stochastic procedure with a linear complexity well approximates the exact formulation. Moreover, we derive a convex optimization approach to efficiently solve the adversarial training problem, which trains neural networks that are robust to adversarial input perturbations. Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods, such as Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). We demonstrate in experiments that the proposed method achieves a noticeably better adversarial robustness and performance than the existing methods.



rate research

Read More

115 - Qi Sun , Hexin Dong , Zewei Chen 2020
Gradient-based algorithms for training ResNets typically require a forward pass of the input data, followed by back-propagating the objective gradient to update parameters, which are time-consuming for deep ResNets. To break the dependencies between modules in both the forward and backward modes, auxiliary-variable methods such as the penalty and augmented Lagrangian (AL) approaches have attracted much interest lately due to their ability to exploit layer-wise parallelism. However, we observe that large communication overhead and lacking data augmentation are two key challenges of these methods, which may lead to low speedup ratio and accuracy drop across multiple compute devices. Inspired by the optimal control formulation of ResNets, we propose a novel serial-parallel hybrid training strategy to enable the use of data augmentation, together with downsampling filters to reduce the communication cost. The proposed strategy first trains the network parameters by solving a succession of independent sub-problems in parallel and then corrects the network parameters through a full serial forward-backward propagation of data. Such a strategy can be applied to most of the existing layer-parallel training methods using auxiliary variables. As an example, we validate the proposed strategy using penalty and AL methods on ResNet and WideResNet across MNIST, CIFAR-10 and CIFAR-100 datasets, achieving significant speedup over the traditional layer-serial training methods while maintaining comparable accuracy.
316 - Simon S. Du , Surbhi Goel 2018
We propose a new algorithm to learn a one-hidden-layer convolutional neural network where both the convolutional weights and the outputs weights are parameters to be learned. Our algorithm works for a general class of (potentially overlapping) patches, including commonly used structures for computer vision tasks. Our algorithm draws ideas from (1) isotonic regression for learning neural networks and (2) landscape analysis of non-convex matrix factorization problems. We believe these findings may inspire further development in designing provable algorithms for learning neural networks and other complex models.
Differentially private stochastic gradient descent (DPSGD) is a variation of stochastic gradient descent based on the Differential Privacy (DP) paradigm which can mitigate privacy threats arising from the presence of sensitive information in training data. One major drawback of training deep neural networks with DPSGD is a reduction in the models accuracy. In this paper, we propose an alternative method for preserving data privacy based on introducing noise through learnable probability distributions, which leads to a significant improvement in the utility of the resulting private models. We also demonstrate that normalization layers have a large beneficial impact on the performance of deep neural networks with noisy parameters. In particular, we show that contrary to general belief, a large amount of random noise can be added to the weights of neural networks without harming the performance, once the networks are augmented with normalization layers. We hypothesize that this robustness is a consequence of the scale invariance property of normalization operators. Building on these observations, we propose a new algorithmic technique for training deep neural networks under very low privacy budgets by sampling weights from Gaussian distributions and utilizing batch or layer normalization techniques to prevent performance degradation. Our method outperforms previous approaches, including DPSGD, by a substantial margin on a comprehensive set of experiments on Computer Vision and Natural Language Processing tasks. In particular, we obtain a 20 percent accuracy improvement over DPSGD on the MNIST and CIFAR10 datasets with DP-privacy budgets of $varepsilon = 0.05$ and $varepsilon = 2.0$, respectively. Our code is available online: https://github.com/uds-lsv/SIDP.
Although graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice, their theoretical guarantee on generalizability remains elusive in the literature. In this paper, we provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems. Under the assumption that there exists a ground-truth GNN model (with zero generalization error), the objective of GNN learning is to estimate the ground-truth GNN parameters from the training data. To achieve this objective, we propose a learning algorithm that is built on tensor initialization and accelerated gradient descent. We then show that the proposed learning algorithm converges to the ground-truth GNN model for the regression problem, and to a model sufficiently close to the ground-truth for the binary classification problem. Moreover, for both cases, the convergence rate of the proposed learning algorithm is proven to be linear and faster than the vanilla gradient descent algorithm. We further explore the relationship between the sample complexity of GNNs and their underlying graph properties. Lastly, we provide numerical experiments to demonstrate the validity of our analysis and the effectiveness of the proposed learning algorithm for GNNs.
Even though deep learning has shown unmatched performance on various tasks, neural networks have been shown to be vulnerable to small adversarial perturbations of the input that lead to significant performance degradation. In this work we extend the idea of adding white Gaussian noise to the network weights and activations during adversarial training (PNI) to the injection of colored noise for defense against common white-box and black-box attacks. We show that our approach outperforms PNI and various previous approaches in terms of adversarial accuracy on CIFAR-10 and CIFAR-100 datasets. In addition, we provide an extensive ablation study of the proposed method justifying the chosen configurations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا