Do you want to publish a course? Click here

Deep High-Resolution Representation Learning for Cross-Resolution Person Re-identification

84   0   0.0 ( 0 )
 Added by Guoqing Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Person re-identification (re-ID) tackles the problem of matching person images with the same identity from different cameras. In practical applications, due to the differences in camera performance and distance between cameras and persons of interest, captured person images usually have various resolutions. We name this problem as Cross-Resolution Person Re-identification which brings a great challenge for matching correctly. In this paper, we propose a Deep High-Resolution Pseudo-Siamese Framework (PS-HRNet) to solve the above problem. Specifically, in order to restore the resolution of low-resolution images and make reasonable use of different channel information of feature maps, we introduce and innovate VDSR module with channel attention (CA) mechanism, named as VDSR-CA. Then we reform the HRNet by designing a novel representation head to extract discriminating features, named as HRNet-ReID. In addition, a pseudo-siamese framework is constructed to reduce the difference of feature distributions between low-resolution images and high-resolution images. The experimental results on five cross-resolution person datasets verify the effectiveness of our proposed approach. Compared with the state-of-the-art methods, our proposed PS-HRNet improves 3.4%, 6.2%, 2.5%,1.1% and 4.2% at Rank-1 on MLR-Market-1501, MLR-CUHK03, MLR-VIPeR, MLR-DukeMTMC-reID, and CAVIAR datasets, respectively. Our code is available at url{https://github.com/zhguoqing}.



rate research

Read More

Images with different resolutions are ubiquitous in public person re-identification (ReID) datasets and real-world scenes, it is thus crucial for a person ReID model to handle the image resolution variations for improving its generalization ability. However, most existing person ReID methods pay little attention to this resolution discrepancy problem. One paradigm to deal with this problem is to use some complicated methods for mapping all images into an artificial image space, which however will disrupt the natural image distribution and requires heavy image preprocessing. In this paper, we analyze the deficiencies of several widely-used objective functions handling image resolution discrepancies and propose a new framework called deep antithetical learning that directly learns from the natural image space rather than creating an arbitrary one. We first quantify and categorize original training images according to their resolutions. Then we create an antithetical training set and make sure that original training images have counterparts with antithetical resolutions in this new set. At last, a novel Contrastive Center Loss(CCL) is proposed to learn from images with different resolutions without being interfered by their resolution discrepancies. Extensive experimental analyses and evaluations indicate that the proposed framework, even using a vanilla deep ReID network, exhibits remarkable performance improvements. Without bells and whistles, our approach outperforms previous state-of-the-art methods by a large margin.
Person re-identification (re-id) aims to retrieve images of same identities across different camera views. Resolution mismatch occurs due to varying distances between person of interest and cameras, this significantly degrades the performance of re-id in real world scenarios. Most of the existing approaches resolve the re-id task as low resolution problem in which a low resolution query image is searched in a high resolution images gallery. Several approaches apply image super resolution techniques to produce high resolution images but ignore the multiple resolutions of gallery images which is a better realistic scenario. In this paper, we introduce channel correlations to improve the learning of features from the degraded data. In addition, to overcome the problem of multiple resolutions we propose a Resolution based Feature Distillation (RFD) approach. Such an approach learns resolution invariant features by filtering the resolution related features from the final feature vectors that are used to compute the distance matrix. We tested the proposed approach on two synthetically created datasets and on one original multi resolution dataset with real degradation. Our approach improves the performance when multiple resolutions occur in the gallery and have comparable results in case of single resolution (low resolution re-id).
As a prevailing task in video surveillance and forensics field, person re-identification (re-ID) aims to match person images captured from non-overlapped cameras. In unconstrained scenarios, person images often suffer from the resolution mismatch problem, i.e., emph{Cross-Resolution Person Re-ID}. To overcome this problem, most existing methods restore low resolution (LR) images to high resolution (HR) by super-resolution (SR). However, they only focus on the HR feature extraction and ignore the valid information from original LR images. In this work, we explore the influence of resolutions on feature extraction and develop a novel method for cross-resolution person re-ID called emph{textbf{M}ulti-Resolution textbf{R}epresentations textbf{J}oint textbf{L}earning} (textbf{MRJL}). Our method consists of a Resolution Reconstruction Network (RRN) and a Dual Feature Fusion Network (DFFN). The RRN uses an input image to construct a HR version and a LR version with an encoder and two decoders, while the DFFN adopts a dual-branch structure to generate person representations from multi-resolution images. Comprehensive experiments on five benchmarks verify the superiority of the proposed MRJL over the relevent state-of-the-art methods.
Feature representation and metric learning are two critical components in person re-identification models. In this paper, we focus on the feature representation and claim that hand-crafted histogram features can be complementary to Convolutional Neural Network (CNN) features. We propose a novel feature extraction model called Feature Fusion Net (FFN) for pedestrian image representation. In FFN, back propagation makes CNN features constrained by the handcrafted features. Utilizing color histogram features (RGB, HSV, YCbCr, Lab and YIQ) and texture features (multi-scale and multi-orientation Gabor features), we get a new deep feature representation that is more discriminative and compact. Experiments on three challenging datasets (VIPeR, CUHK01, PRID450s) validates the effectiveness of our proposal.
High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions emph{in series} (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams emph{in parallel}; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at~{url{https://github.com/HRNet}}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا