Do you want to publish a course? Click here

SiamMOT: Siamese Multi-Object Tracking

130   0   0.0 ( 0 )
 Added by Bing Shuai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we focus on improving online multi-object tracking (MOT). In particular, we introduce a region-based Siamese Multi-Object Tracking network, which we name SiamMOT. SiamMOT includes a motion model that estimates the instances movement between two frames such that detected instances are associated. To explore how the motion modelling affects its tracking capability, we present two variants of Siamese tracker, one that implicitly models motion and one that models it explicitly. We carry out extensive quantitative experiments on three different MOT datasets: MOT17, TAO-person and Caltech Roadside Pedestrians, showing the importance of motion modelling for MOT and the ability of SiamMOT to substantially outperform the state-of-the-art. Finally, SiamMOT also outperforms the winners of ACM MM20 HiEve Grand Challenge on HiEve dataset. Moreover, SiamMOT is efficient, and it runs at 17 FPS for 720P videos on a single modern GPU. Codes are available in url{https://github.com/amazon-research/siam-mot}.



rate research

Read More

Siamese-based trackers have achieved excellent performance on visual object tracking. However, the target template is not updated online, and the features of the target template and search image are computed independently in a Siamese architecture. In this paper, we propose Deformable Siamese Attention Networks, referred to as SiamAttn, by introducing a new Siamese attention mechanism that computes deformable self-attention and cross-attention. The self attention learns strong context information via spatial attention, and selectively emphasizes interdependent channel-wise features with channel attention. The cross-attention is capable of aggregating rich contextual inter-dependencies between the target template and the search image, providing an implicit manner to adaptively update the target template. In addition, we design a region refinement module that computes depth-wise cross correlations between the attentional features for more accurate tracking. We conduct experiments on six benchmarks, where our method achieves new state of-the-art results, outperforming the strong baseline, SiamRPN++ [24], by 0.464->0.537 and 0.415->0.470 EAO on VOT 2016 and 2018. Our code is available at: https://github.com/msight-tech/research-siamattn.
Single object tracking (SOT) is currently one of the most important tasks in computer vision. With the development of the deep network and the release for a series of large scale datasets for single object tracking, siamese networks have been proposed and perform better than most of the traditional methods. However, recent siamese networks get deeper and slower to obtain better performance. Most of these methods could only meet the needs of real-time object tracking in ideal environments. In order to achieve a better balance between efficiency and accuracy, we propose a simpler siamese network for single object tracking, which runs fast in poor hardware configurations while remaining an excellent accuracy. We use a more efficient regression method to compute the location of the tracked object in a shorter time without losing much precision. For improving the accuracy and speeding up the training progress, we introduce the Squeeze-and-excitation (SE) network into the feature extractor. In this paper, we compare the proposed method with some state-of-the-art trackers and analysis their performances. Using our method, a siamese network could be trained with shorter time and less data. The fast processing speed enables combining object tracking with object detection or other tasks in real time.
199 - Yihao Luo , Min Xu , Caihong Yuan 2020
Recently spiking neural networks (SNNs), the third-generation of neural networks has shown remarkable capabilities of energy-efficient computing, which is a promising alternative for deep neural networks (DNNs) with high energy consumption. SNNs have reached competitive results compared to DNNs in relatively simple tasks and small datasets such as image classification and MNIST/CIFAR, while few studies on more challenging vision tasks on complex datasets. In this paper, we focus on extending deep SNNs to object tracking, a more advanced vision task with embedded applications and energy-saving requirements, and present a spike-based Siamese network called SiamSNN. Specifically, we propose an optimized hybrid similarity estimation method to exploit temporal information in the SNNs, and introduce a novel two-status coding scheme to optimize the temporal distribution of output spike trains for further improvements. SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013/2015, VOT2016/2018, and GOT-10k. Moreover, SiamSNN achieves notably low energy consumption and real-time on Neuromorphic chip TrueNorth.
Multi-sensor perception is crucial to ensure the reliability and accuracy in autonomous driving system, while multi-object tracking (MOT) improves that by tracing sequential movement of dynamic objects. Most current approaches for multi-sensor multi-object tracking are either lack of reliability by tightly relying on a single input source (e.g., center camera), or not accurate enough by fusing the results from multiple sensors in post processing without fully exploiting the inherent information. In this study, we design a generic sensor-agnostic multi-modality MOT framework (mmMOT), where each modality (i.e., sensors) is capable of performing its role independently to preserve reliability, and further improving its accuracy through a novel multi-modality fusion module. Our mmMOT can be trained in an end-to-end manner, enables joint optimization for the base feature extractor of each modality and an adjacency estimator for cross modality. Our mmMOT also makes the first attempt to encode deep representation of point cloud in data association process in MOT. We conduct extensive experiments to evaluate the effectiveness of the proposed framework on the challenging KITTI benchmark and report state-of-the-art performance. Code and models are available at https://github.com/ZwwWayne/mmMOT.
Comprehensive understanding of dynamic scenes is a critical prerequisite for intelligent robots to autonomously operate in their environment. Research in this domain, which encompasses diverse perception problems, has primarily been focused on addressing specific tasks individually rather than modeling the ability to understand dynamic scenes holistically. In this paper, we introduce a novel perception task denoted as multi-object panoptic tracking (MOPT), which unifies the conventionally disjoint tasks of semantic segmentation, instance segmentation, and multi-object tracking. MOPT allows for exploiting pixel-level semantic information of thing and stuff classes, temporal coherence, and pixel-level associations over time, for the mutual benefit of each of the individual sub-problems. To facilitate quantitative evaluations of MOPT in a unified manner, we propose the soft panoptic tracking quality (sPTQ) metric. As a first step towards addressing this task, we propose the novel PanopticTrackNet architecture that builds upon the state-of-the-art top-down panoptic segmentation network EfficientPS by adding a new tracking head to simultaneously learn all sub-tasks in an end-to-end manner. Additionally, we present several strong baselines that combine predictions from state-of-the-art panoptic segmentation and multi-object tracking models for comparison. We present extensive quantitative and qualitative evaluations of both vision-based and LiDAR-based MOPT that demonstrate encouraging results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا