Do you want to publish a course? Click here

Improving MP2 band gaps with low-scaling approximations to EOM-CCSD

139   0   0.0 ( 0 )
 Added by Timothy Berkelbach
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite its reasonable accuracy for ground-state properties of semiconductors and insulators, second-order Moller-Plesset perturbation theory (MP2) significantly underestimates band gaps. Here, we evaluate the band gap predictions of partitioned equation-of-motion MP2 (P-EOM-MP2), which is a second-order approximation to equation-of-motion coupled-cluster theory with single and double excitations. On a test set of elemental and binary semiconductors and insulators, we find that P-EOM-MP2 overestimates band gaps by 0.3 eV on average, which can be compared to the underestimation by 0.6 eV on average exhibited by the G0W0 approximation with a PBE reference. We show that P-EOM-MP2, when interpreted as a Greens function-based theory, has a self-energy that includes all first- and second- order diagrams and a few third-order diagrams. We find that the GW approximation performs better for materials with small gaps and P-EOM-MP2 performs better for materials with large gaps, which we attribute to their superior treatment of screening and exchange, respectively.



rate research

Read More

The recent TASK meta-GGA density functional [Phys. Rev. Research, 1, 033082 (2019)] is constructed with an enhanced nonlocality in the generalized Kohn-Sham scheme, and therefore harbors great opportunities for band gap prediction. Although this approximation was found to yield excellent band gaps of bulk solids, this accuracy cannot be straightforwardly transferred to low-dimensional materials. The reduced screening of these materials results in larger band gaps compared to their bulk counterparts, as an additional barrier to overcome. In this work, we demonstrate how the alteration of exact physical constraints in this functional affects the band gaps of monolayers and nanoribbons, and present accurate band gaps competing with the HSE06 approximation. In order to achieve this goal, we have modified the TASK functional (a) by changing the tight upper-bound for one or two-electron systems ($h_X^0$) from 1.174 to 1.29 (b) by changing the limit of interpolation function $f_X (alpha rightarrow infty$) of the TASK functional that interpolates the exchange enhancement factor $F_X (s,alpha)$ from $alpha=$ 0 to 1. The resulting modified TASK (mTASK) was tested for various materials from 3D to 2D to 1D (nanoribbons), and was compared with the results of the higher-level hybrid functional HSE06 or with the G$_0$W$_0$ approximation within many-body perturbation theory. We find that mTASK greatly improves the band gaps and band structures of 2D and 1D systems, without significantly affecting the accuracy of the original TASK for the bulk 3D materials, when compared to the PBE-GGA and SCAN meta-GGA. We further demonstrate the applicability of mTASK by assessing the band structures of TMD nanoribbons with respect to various bending curvatures.
Unlike the local density approximation (LDA) and the generalized gradient approximation (GGA), calculations with meta-generalized gradient approximations (meta-GGA) are usually done according to the generalized Kohn-Sham (gKS) formalism. The exchange-correlation potential of the gKS equation is non-multiplicative, which prevents systematic comparison of meta-GGA bandstructures to those of the LDA and the GGA. We implement the optimized effective potential (OEP) of the meta-GGA for periodic systems, which allows us to carry out meta-GGA calculations in the same KS manner as for the LDA and the GGA. We apply the OEP to several meta-GGAs, including the new SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)]. We find that the KS gaps and KS band structures of meta-GGAs are close to those of GGAs. They are smaller than the more realistic gKS gaps of meta-GGAs, but probably close to the less-realistic gaps in the band structure of the exact KS potential, as can be seen by comparing with the gaps of the EXX+RPA OEP potential. The well-known grid sensitivity of meta-GGAs is much more severe in OEP calculations.
The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation (xc) energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturally from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional - the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.
Ultra long linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes, and they show a promising new route to one--atom--wide semiconductors with a direct band gap. Theoretical studies predicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine for the first time the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chains bond length alternation.
Symmetry and topology are two fundamental aspects of many quantum states of matter. Recently, new topological materials, higher-order topological insulators, were discovered, featuring, e.g., bulk-edge-corner correspondence that goes beyond the conventional topological paradigms. Here, we discover experimentally that the nonsymmorphic $p4g$ acoustic metacrystals host a symmetry-protected hierarchy of topological multipoles: the lowest band gap has a quantized Wannier dipole and can mimic the quantum spin Hall effect, while the second band gap exhibits quadrupole topology with anomalous Wannier bands. Such a topological hierarchy allows us to observe experimentally distinct, multiplexing topological phenomena and to reveal a topological transition triggered by the geometry-transition from the $p4g$ group to the $C_{4v}$ group which demonstrates elegantly the fundamental interplay between symmetry and topology. Our study demonstrates an instance that classical systems with controllable geometry can serve as powerful simulators for the discovery of novel topological states of matter and their phase transitions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا