Do you want to publish a course? Click here

Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals

77   0   0.0 ( 0 )
 Added by Jian-Hua Jiang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Symmetry and topology are two fundamental aspects of many quantum states of matter. Recently, new topological materials, higher-order topological insulators, were discovered, featuring, e.g., bulk-edge-corner correspondence that goes beyond the conventional topological paradigms. Here, we discover experimentally that the nonsymmorphic $p4g$ acoustic metacrystals host a symmetry-protected hierarchy of topological multipoles: the lowest band gap has a quantized Wannier dipole and can mimic the quantum spin Hall effect, while the second band gap exhibits quadrupole topology with anomalous Wannier bands. Such a topological hierarchy allows us to observe experimentally distinct, multiplexing topological phenomena and to reveal a topological transition triggered by the geometry-transition from the $p4g$ group to the $C_{4v}$ group which demonstrates elegantly the fundamental interplay between symmetry and topology. Our study demonstrates an instance that classical systems with controllable geometry can serve as powerful simulators for the discovery of novel topological states of matter and their phase transitions.



rate research

Read More

We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings in the bulk, which realize Fermi surfaces of reduced dimensionality. We find that these unavoidable crossings originate from the momentum dependence of the nonsymmorphic symmetry, which puts strong restrictions on the global structure of the band configurations. Three different types of nonsymmorphic symmetries are considered: (i) a unitary nonsymmorphic symmetry, (ii) a nonsymmorphic magnetic symmetry, and (iii) a nonsymmorphic symmetry combined with inversion. For nonsymmorphic symmetries of the latter two types, the band crossings are located at high-symmetry points of the Brillouin zone, with their exact positions being determined by the algebra of the symmetry operators. To characterize these band degeneracies we introduce a emph{global} topological charge and show that it is of $mathbb{Z}_2$ type, which is in contrast to the emph{local} topological charge of Fermi points in, say, Weyl semimetals. To illustrate these concepts, we discuss the $pi$-flux state as well as the SSH model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic two-band systems.
The classification and construction of symmetry protected topological (SPT) phases have been intensively studied in interacting systems recently. To our surprise, in interacting fermion systems, there exists a new class of the so-called anomalous SPT (ASPT) states which are only well defined on the boundary of a trivial fermionic bulk system. We first demonstrate the essential idea by considering an anomalous topological superconductor with time reversal symmetry $T^2=1$ in 2D. The physical reason is that the fermion parity might be changed locally by certain symmetry action, but is conserved if we introduce a bulk. Then we discuss the layer structure and systematical construction of ASPT states in interacting fermion systems in 2D with a total symmetry $G_f=G_btimesmathbb{Z}_2^f$. Finally, potential experimental realizations of ASPT states are also addressed.
352 - Jie-Xiang Yu , J. G. Che 2015
Depositing Au on a graphene derivate, which involves substituting four C atoms with three N atoms in a $3times 3$ cell graphene, we realized a topological insulator of the Kane-Mele model with a gap of 50~meV surrounding the Dirac point of graphene. In this material, we observed an anomalous band inversion (BI) protected by the symmetry with character $e$ of group C$_{rm 3V}$. The symmetry constrains two $e$ bands with mirror-symmetry combination (MSC) and mirror-antisymmetry combination (MAC) of Au and N orbitals degenerate at $Gamma$, whereas the interaction of $pi^*$ of graphene on the $e$-MAC band tends to lift this degenerate, resulting in that the $pi^*$ and $e$-MAC band exchange their orbital components near $Gamma$, causing thus a discontinued BI.
Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems.
In this work, we predict a novel band structure for Carbon-Lithium(C4Li) compound using the first-principles method. We show that it exhibits two Dirac points near the Fermi level; one located at W point originating from the nonsymmophic symmetry of the compound, and the other one behaves like a type-II Dirac cone with higher anisotropy along the {Gamma} to X line. The obtained Fermi surface sheets of the hole-pocket and the electron-pocket near the type-II Dirac cone are separated from each other, and they would touch each other when the Fermi level is doped to cross the type-II Dirac cone. The evolution of Fermi surface with doping is also discussed. The bands crossing from T to W make a line-node at the intersection of kx={pi} and ky={pi} mirror planes. The C4Li is a novel material with both nonsymmorphic protected Dirac cone and type-II Dirac cone near the Fermi level which may exhibit exceptional topological property for electronic applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا