Do you want to publish a course? Click here

Unconventional charge density wave and photoinduced lattice symmetry change in Kagome Metal CsV$_3$Sb$_5$ probed by time-resolved spectroscopy

97   0   0.0 ( 0 )
 Added by Zixiao Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, kagome lattice metal AV$_3$Sb$_5$ (A = K, Rb, Cs) family has received wide attention due to its presence of superconductivity, charge density wave (CDW) and peculiar properties from topological nontrivial electronic structure. With time-resolved pump-probe spectroscopy, we show that the excited quasiparticle relaxation dynamics can be explained by formation of energy gap below the phase transition being similar to a usual second-order CDW condensate, by contrast, the structure change is predominantly first order phase transition. Furthermore, no CDW amplitude mode is identified in the ordered phase. The results suggest that the CDW order is very different from the traditional CDW condensate. We also find that weak pump pulse can non-thermally melt the CDW order and drive the sample into its high temperature phase, revealing the fact that the difference in lattice potential between those phases is small.



rate research

Read More

Using first-principles calculations, we identify the origin of the observed charge density wave (CDW) formation in a layered kagome metal CsV$_3$Sb$_5$. It is revealed that the structural distortion of kagome lattice forming the trimeric and hexameric V atoms is accompanied by the stabilization of quasimolecular states, which gives rise to the opening of CDW gaps for the V-derived multibands lying around the Fermi level. This Jahn-Teller-like instability having the local lattice distortion and its derived quasimolecular states is a driving force of the CDW order. Specifically, the saddle points of multiple Dirac bands near the Fermi level, located at the $M$ point, are hybridized to disappear along the $k_z$ direction, therefore not supporting the widely accepted Peierls-like electronic instability due to Fermi surface nesting. It is further demonstrated that applied hydrostatic pressure significantly reduces the interlayer spacing to destabilize the quasimolecular states, leading to a disappearance of the CDW phase at a pressure of ${sim}$2 GPa. The presently proposed underlying mechanism of the CDW order in CsV$_3$Sb$_5$ can also be applicable to other isostructural kagome lattices such as KV$_3$Sb$_5$ and RbV$_3$Sb$_5$.
CsV$_3$Sb$_5$ is a newly discovered Kagome superconductor that attracts great interest due to its topological nontrivial band structure and the coexistence of superconductivity and charge-density-wave (CDW) with many exotic properties. Here, we report the detailed characterization of the CDW gap in high-quality CsV$_3$Sb$_5$ single crystals using high-resolution angle-resolved photoemission spectroscopy. We find that the CDW gap is strongly momentum dependent. While gapped around the $M$ point, the electronic states remain gapless around the $Gamma$ point and along the $Gamma$-$K$ direction. Such momentum dependence indicates that the CDW is driven by the scattering of electrons between neighboring $M$ points, where the band structure hosts multiple saddle points and the density of state diverges near the Fermi level. Our observations of the partially gapped Fermi surface and strongly momentum-dependent CDW gap not only provide a foundation for uncovering the mechanism of CDW in CsV$_3$Sb$_5$, but also shed light on the understanding of how the CDW coexists with superconductivity in this topological Kagome superconductor.
The kagome lattice is host to flat bands, topological electronic structures, Van Hove singularities and diverse electronic instabilities, providing an ideal platform for realizing highly tunable electronic states. Here, we report soft- and mechanical- point-contact spectroscopy (SPCS and MPCS) studies of the kagome superconductors KV$_3$Sb$_5$ and CsV$_3$Sb$_5$. Compared to the superconducting transition temperature $T_{rm c}$ from specific heat measurements (2.8~K for CsV$_3$Sb$_5$ and 1.0~K for KV$_3$Sb$_5$), significantly enhanced values of $T_{rm c}$ are observed via the zero-bias conductance of SPCS ($sim$4.2~K for CsV$_3$Sb$_5$ and $sim$1.8~K for KV$_3$Sb$_5$), which become further enhanced in MPCS measurements ($sim$5.0~K for CsV$_3$Sb$_5$ and $sim$3.1~K for KV$_3$Sb$_5$). While the differential conductance curves from SPCS are described by a two-gap $s$-wave model, a single $s$-wave gap reasonably captures the MPCS data, likely due to a diminishing spectral weight of the other gap. The enhanced superconductivity probably arises from local strain caused by the point-contact, which also leads to the evolution from two-gap to single-gap behaviors in different point-contacts. Our results demonstrate highly strain-sensitive superconductivity in kagome metals CsV$_3$Sb$_5$ and KV$_3$Sb$_5$, which may be harnessed in the manipulation of possible Majorana zero modes.
We report on a detailed study of the optical properties of CsV$_{3}$Sb$_{5}$ at a large number of temperatures above and below the charge-density-wave (CDW) transition. Above the CDW transition, the low-frequency optical conductivity reveals two Drude components with distinct widths. An examination of the band structure allows us to ascribe the narrow Drude to multiple light and Dirac bands, and the broad Drude to the heavy bands near the $M$ points which form saddle points near the Fermi level. Upon entering the CDW state, the opening of the CDW gap is clearly observed. A large portion of the broad Drude is removed by the gap, whereas the narrow Drude is not affected. Meanwhile, an absorption peak associated with interband transitions near the saddle points shifts to higher energy and grows in weight. These observations are consistent with the scenario that the CDW in CsV$_{3}$Sb$_{5}$ is driven by nesting of Fermi surfaces near the saddle points at $M$.
291 - Alaska Subedi 2021
I search for the ground state structures of the kagome metals KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$ using first principles calculations. Group-theoretical analysis shows that there are seventeen different distortions that are possible due to the phonon instabilities at the $M$ $(frac{1}{2},0,0)$ and $L$ $(frac{1}{2},0,frac{1}{2})$ points in the Brilouin zone of the parent $P6/mmm$ phase of these materials. I generated these structures for the three compounds and performed full structural relaxations that minimize the atomic forces and lattice stresses. I find that the $Fmmm$ phase with the order parameter $M_1^+$ $(a,0,0)$ $+$ $L_2^-$ $(0,b,b)$ has the lowest energy among these possibilities in all three compounds. However, the $Fmmm$ exhibits a dynamical instability at its $Z$ $(0,0,1)$ point, which corresponds to the $A$ $(0,0,frac{1}{2})$ point in the parent $P6/mmm$ phase. Condensation of this instability leads to a base-centered orthorhombic structure with the space group $Cmcm$ and $4Q$ order parameter $M_1^+$ $(a,0,0)$ $+$ $L_2^-$ $(0,b,b)$ $+$ $A_6^+$ $(frac{1}{2}c,frac{-sqrt{3}}{2}c)$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا