Do you want to publish a course? Click here

A new computational framework for log-concave density estimation

447   0   0.0 ( 0 )
 Added by Wenyu Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In Statistics, log-concave density estimation is a central problem within the field of nonparametric inference under shape constraints. Despite great progress in recent years on the statistical theory of the canonical estimator, namely the log-concave maximum likelihood estimator, adoption of this method has been hampered by the complexities of the non-smooth convex optimization problem that underpins its computation. We provide enhanced understanding of the structural properties of this optimization problem, which motivates the proposal of new algorithms, based on both randomized and Nesterov smoothing, combined with an appropriate integral discretization of increasing accuracy. We prove that these methods enjoy, both with high probability and in expectation, a convergence rate of order $1/T$ up to logarithmic factors on the objective function scale, where $T$ denotes the number of iterations. The benefits of our new computational framework are demonstrated on both synthetic and real data, and our implementation is available in a github repository texttt{LogConcComp} (Log-Concave Computation).



rate research

Read More

126 - Suvra Pal , Souvik Roy 2019
In this paper, we develop a new estimation procedure based on the non-linear conjugate gradient (NCG) algorithm for the Box-Cox transformation cure rate model. We compare the performance of the NCG algorithm with the well-known expectation maximization (EM) algorithm through a simulation study and show the advantages of the NCG algorithm over the EM algorithm. In particular, we show that the NCG algorithm allows simultaneous maximization of all model parameters when the likelihood surface is flat with respect to a Box-Cox model parameter. This is a big advantage over the EM algorithm, where a profile likelihood approach has been proposed in the literature that may not provide satisfactory results. We finally use the NCG algorithm to analyze a well-known melanoma data and show that it results in a better fit.
111 - Elina Robeva , Bernd Sturmfels , 2017
Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on $mathbb{R}^d$ that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.
In this note we provide explicit expressions and expansions for a special function which appears in nonparametric estimation of log-densities. This function returns the integral of a log-linear function on a simplex of arbitrary dimension. In particular it is used in the R-package LogCondDEAD by Cule et al. (2007).
Estimation of the precision matrix (or inverse covariance matrix) is of great importance in statistical data analysis. However, as the number of parameters scales quadratically with the dimension p, computation becomes very challenging when p is large. In this paper, we propose an adaptive sieving reduction algorithm to generate a solution path for the estimation of precision matrices under the $ell_1$ penalized D-trace loss, with each subproblem being solved by a second-order algorithm. In each iteration of our algorithm, we are able to greatly reduce the number of variables in the problem based on the Karush-Kuhn-Tucker (KKT) conditions and the sparse structure of the estimated precision matrix in the previous iteration. As a result, our algorithm is capable of handling datasets with very high dimensions that may go beyond the capacity of the existing methods. Moreover, for the sub-problem in each iteration, other than solving the primal problem directly, we develop a semismooth Newton augmented Lagrangian algorithm with global linear convergence on the dual problem to improve the efficiency. Theoretical properties of our proposed algorithm have been established. In particular, we show that the convergence rate of our algorithm is asymptotically superlinear. The high efficiency and promising performance of our algorithm are illustrated via extensive simulation studies and real data applications, with comparison to several state-of-the-art solvers.
Let X_1, ..., X_n be independent and identically distributed random vectors with a log-concave (Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood estimator of f. The use of this estimator is attractive because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof is non-constructive, we are able to reformulate the issue of computation in terms of a non-differentiable convex optimisation problem, and thus combine techniques of computational geometry with Shors r-algorithm to produce a sequence that converges to the maximum likelihood estimate. For the moderate or large sample sizes in our simulations, the maximum likelihood estimator is shown to provide an improvement in performance compared with kernel-based methods, even when we allow the use of a theoretical, optimal fixed bandwidth for the kernel estimator that would not be available in practice. We also present a real data clustering example, which shows that our methodology can be used in conjunction with the Expectation--Maximisation (EM) algorithm to fit finite mixtures of log-concave densities. An R version of the algorithm is available in the package LogConcDEAD -- Log-Concave Density Estimation in Arbitrary Dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا