Do you want to publish a course? Click here

Phonons in MoSe2/WSe2 van der Waals heterobilayer

99   0   0.0 ( 0 )
 Added by Karim Rezouali
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report first-principles calculations of the structural and vibrational properties of the synthesized two-dimensional van der Waals heterostructures formed by single-layers dichalcogenides MoSe2 and WSe2. We show that, when combining these systems in a periodic two-dimensional heterostructures, the intrinsic phonon characteristics of the free-standing constituents are to a large extent preserved but, furthermore, exhibit shear and breathing phonon modes that are not present in the individual building blocks. These peculiar modes depend strongly on the weak vdW forces and has a great contibution to the thermal properties of the layered materials. Besides these features, the departure of flexural modes of heterobilayer from the ones of its monolayer parents are also found.



rate research

Read More

An emerging class of semiconductor heterostructures involves stacking discrete monolayers such as the transition metal dichalcogenides (TMDs) to form van der Waals heterostructures. In these structures, it is possible to create interlayer excitons (ILEs), spatially indirect, bound electron-hole pairs with the electron in one TMD layer and the hole in an adjacent layer. We are able to clearly resolve two distinct emission peaks separated by 24 meV from an ILE in a MoSe2/WSe2 heterostructure fabricated using state-of-the-art preparation techniques. These peaks have nearly equal intensity, indicating they are of common character, and have opposite circular polarizations when excited with circularly polarized light. Ab initio calculations successfully account for these observations - they show that both emission features originate from excitonic transitions that are indirect in momentum space, are split by spin-orbit coupling, and that including interlayer hybridization is essential in correctly describing the ILE transition. Although well separated in momentum space, we find that in real space the electron has significant weight in both the MoSe2 and WSe2 layers, contrary to the commonly assumed model. This is a significant consideration for understanding the static and dynamic properties of TMD heterostructures.
The atomic-level vdW heterostructures have been one of the most interesting quantum material systems, due to their exotic physical properties. The interlayer coupling in these systems plays a critical role to realize novel physical observation and enrich interface functionality. However, there is still lack of investigation on the tuning of interlayer coupling in a quantitative way. A prospective strategy to tune the interlayer coupling is to change the electronic structure and interlayer distance by high pressure, which is a well-established method to tune the physical properties. Here, we construct a high-quality WS2/MoSe2 heterostructure in a DAC and successfully tuned the interlayer coupling through hydrostatic pressure. Typical photoluminescence spectra of the monolayer MoSe2 (ML-MoSe2), monolayer WS2 (ML-WS2) and WS2/MoSe2 heterostructure have been observed and its intriguing that their photoluminescence peaks shift with respect to applied pressure in a quite different way. The intralayer exciton of ML-MoSe2 and ML-WS2 show blue shift under high pressure with a coefficient of 19.8 meV/GPa and 9.3 meV/GPa, respectively, while their interlayer exciton shows relative weak pressure dependence with a coefficient of 3.4 meV/GPa. Meanwhile, external pressure helps to drive stronger interlayer interaction and results in a higher ratio of interlayer/intralayer exciton intensity, indicating the enhanced interlayer exciton behavior. The first-principles calculation reveals the stronger interlayer interaction which leads to enhanced interlayer exciton behavior in WS2/MoSe2 heterostructure under external pressure and reveals the robust peak of interlayer exciton. This work provides an effective strategy to study the interlayer interaction in vdW heterostructures, which could be of great importance for the material and device design in various similar quantum systems.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, the family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. We present optical dispersion engineering in a superlattice structure comprised of alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate > 90 % narrowband absorption in < 4 nm active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in cm2 samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tunable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically-thin layers.
We have synthesized unique colloidal nanoplatelets of the ferromagnetic two-dimensional (2D) van der Waals material CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The isolated CrI3 nanoplatelets have lateral dimensions of ~25 nm and ensemble thicknesses of only ~4 nm, corresponding to just a few CrI3 monolayers. Magnetic and magneto-optical measurements demonstrate robust 2D ferromagnetic ordering in these nanoplatelets with Curie temperatures similar to those observed in bulk CrI3, despite the strong spatial confinement. These data also show magnetization steps akin to those observed in micron-sized few-layer 2D sheets and associated with concerted spin-reversal of individual CrI3 layers within few-layer van der Waals stacks. Similar data have also been obtained for CrBr3 and anion-alloyed Cr(I1-xBrx)3 nanoplatelets. These results represent the first example of laterally confined 2D van der Waals ferromagnets of any composition. The demonstration of robust ferromagnetism at nanometer lateral dimensions opens new doors for miniaturization in spintronics devices based on van der Waals ferromagnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا