No Arabic abstract
Channel pruning and tensor decomposition have received extensive attention in convolutional neural network compression. However, these two techniques are traditionally deployed in an isolated manner, leading to significant accuracy drop when pursuing high compression rates. In this paper, we propose a Collaborative Compression (CC) scheme, which joints channel pruning and tensor decomposition to compress CNN models by simultaneously learning the model sparsity and low-rankness. Specifically, we first investigate the compression sensitivity of each layer in the network, and then propose a Global Compression Rate Optimization that transforms the decision problem of compression rate into an optimization problem. After that, we propose multi-step heuristic compression to remove redundant compression units step-by-step, which fully considers the effect of the remaining compression space (i.e., unremoved compression units). Our method demonstrates superior performance gains over previous ones on various datasets and backbone architectures. For example, we achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
The mainstream approach for filter pruning is usually either to force a hard-coded importance estimation upon a computation-heavy pretrained model to select important filters, or to impose a hyperparameter-sensitive sparse constraint on the loss objective to regularize the network training. In this paper, we present a novel filter pruning method, dubbed dynamic-coded filter fusion (DCFF), to derive compact CNNs in a computation-economical and regularization-free manner for efficient image classification. Each filter in our DCFF is firstly given an inter-similarity distribution with a temperature parameter as a filter proxy, on top of which, a fresh Kullback-Leibler divergence based dynamic-coded criterion is proposed to evaluate the filter importance. In contrast to simply keeping high-score filters in other methods, we propose the concept of filter fusion, i.e., the weighted averages using the assigned proxies, as our preserved filters. We obtain a one-hot inter-similarity distribution as the temperature parameter approaches infinity. Thus, the relative importance of each filter can vary along with the training of the compact CNN, leading to dynamically changeable fused filters without both the dependency on the pretrained model and the introduction of sparse constraints. Extensive experiments on classification benchmarks demonstrate the superiority of our DCFF over the compared counterparts. For example, our DCFF derives a compact VGGNet-16 with only 72.77M FLOPs and 1.06M parameters while reaching top-1 accuracy of 93.47% on CIFAR-10. A compact ResNet-50 is obtained with 63.8% FLOPs and 58.6% parameter reductions, retaining 75.60% top-1 accuracy on ILSVRC-2012. Our code, narrower models and training logs are available at https://github.com/lmbxmu/DCFF.
To have a better understanding and usage of Convolution Neural Networks (CNNs), the visualization and interpretation of CNNs has attracted increasing attention in recent years. In particular, several Class Activation Mapping (CAM) methods have been proposed to discover the connection between CNNs decision and image regions. In spite of the reasonable visualization, lack of clear and sufficient theoretical support is the main limitation of these methods. In this paper, we introduce two axioms -- Conservation and Sensitivity -- to the visualization paradigm of the CAM methods. Meanwhile, a dedicated Axiom-based Grad-CAM (XGrad-CAM) is proposed to satisfy these axioms as much as possible. Experiments demonstrate that XGrad-CAM is an enhanced version of Grad-CAM in terms of conservation and sensitivity. It is able to achieve better visualization performance than Grad-CAM, while also be class-discriminative and easy-to-implement compared with Grad-CAM++ and Ablation-CAM. The code is available at https://github.com/Fu0511/XGrad-CAM.
We revisit the importance of the individual units in Convolutional Neural Networks (CNNs) for visual recognition. By conducting unit ablation experiments on CNNs trained on large scale image datasets, we demonstrate that, though ablating any individual unit does not hurt overall classification accuracy, it does lead to significant damage on the accuracy of specific classes. This result shows that an individual unit is specialized to encode information relevant to a subset of classes. We compute the correlation between the accuracy drop under unit ablation and various attributes of an individual unit such as class selectivity and weight L1 norm. We confirm that unit attributes such as class selectivity are a poor predictor for impact on overall accuracy as found previously in recent work cite{morcos2018importance}. However, our results show that class selectivity along with other attributes are good predictors of the importance of one unit to individual classes. We evaluate the impact of random rotation, batch normalization, and dropout to the importance of units to specific classes. Our results show that units with high selectivity play an important role in network classification power at the individual class level. Understanding and interpreting the behavior of these units is necessary and meaningful.
Designing effective architectures is one of the key factors behind the success of deep neural networks. Existing deep architectures are either manually designed or automatically searched by some Neural Architecture Search (NAS) methods. However, even a well-designed/searched architecture may still contain many nonsignificant or redundant modules/operations. Thus, it is necessary to optimize the operations inside an architecture to improve the performance without introducing extra computational cost. To this end, we have proposed a Neural Architecture Transformer (NAT) method which casts the optimization problem into a Markov Decision Process (MDP) and seeks to replace the redundant operations with more efficient operations, such as skip or null connection. Note that NAT only considers a small number of possible transitions and thus comes with a limited search/transition space. As a result, such a small search space may hamper the performance of architecture optimization. To address this issue, we propose a Neural Architecture Transformer++ (NAT++) method which further enlarges the set of candidate transitions to improve the performance of architecture optimization. Specifically, we present a two-level transition rule to obtain valid transitions, i.e., allowing operations to have more efficient types (e.g., convolution->separable convolution) or smaller kernel sizes (e.g., 5x5->3x3). Note that different operations may have different valid transitions. We further propose a Binary-Masked Softmax (BMSoftmax) layer to omit the possible invalid transitions. Extensive experiments on several benchmark datasets show that the transformed architecture significantly outperforms both its original counterpart and the architectures optimized by existing methods.
Advanced tensor decomposition, such as Tensor train (TT) and Tensor ring (TR), has been widely studied for deep neural network (DNN) model compression, especially for recurrent neural networks (RNNs). However, compressing convolutional neural networks (CNNs) using TT/TR always suffers significant accuracy loss. In this paper, we propose a systematic framework for tensor decomposition-based model compression using Alternating Direction Method of Multipliers (ADMM). By formulating TT decomposition-based model compression to an optimization problem with constraints on tensor ranks, we leverage ADMM technique to systemically solve this optimization problem in an iterative way. During this procedure, the entire DNN model is trained in the original structure instead of TT format, but gradually enjoys the desired low tensor rank characteristics. We then decompose this uncompressed model to TT format and fine-tune it to finally obtain a high-accuracy TT-format DNN model. Our framework is very general, and it works for both CNNs and RNNs, and can be easily modified to fit other tensor decomposition approaches. We evaluate our proposed framework on different DNN models for image classification and video recognition tasks. Experimental results show that our ADMM-based TT-format models demonstrate very high compression performance with high accuracy. Notably, on CIFAR-100, with 2.3X and 2.4X compression ratios, our models have 1.96% and 2.21% higher top-1 accuracy than the original ResNet-20 and ResNet-32, respectively. For compressing ResNet-18 on ImageNet, our model achieves 2.47X FLOPs reduction without accuracy loss.