Do you want to publish a course? Click here

One2Set: Generating Diverse Keyphrases as a Set

72   0   0.0 ( 0 )
 Added by Jiacheng Ye
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, the sequence-to-sequence models have made remarkable progress on the task of keyphrase generation (KG) by concatenating multiple keyphrases in a predefined order as a target sequence during training. However, the keyphrases are inherently an unordered set rather than an ordered sequence. Imposing a predefined order will introduce wrong bias during training, which can highly penalize shifts in the order between keyphrases. In this work, we propose a new training paradigm One2Set without predefining an order to concatenate the keyphrases. To fit this paradigm, we propose a novel model that utilizes a fixed set of learned control codes as conditions to generate a set of keyphrases in parallel. To solve the problem that there is no correspondence between each prediction and target during training, we propose a $K$-step target assignment mechanism via bipartite matching, which greatly increases the diversity and reduces the duplication ratio of generated keyphrases. The experimental results on multiple benchmarks demonstrate that our approach significantly outperforms the state-of-the-art methods.



rate research

Read More

106 - Zhiqing Sun , Jian Tang , Pan Du 2019
Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches.
Despite the improvement of translation quality, neural machine translation (NMT) often suffers from the lack of diversity in its generation. In this paper, we propose to generate diverse translations by deriving a large number of possible models with Bayesian modelling and sampling models from them for inference. The possible models are obtained by applying concrete dropout to the NMT model and each of them has specific confidence for its prediction, which corresponds to a posterior model distribution under specific training data in the principle of Bayesian modeling. With variational inference, the posterior model distribution can be approximated with a variational distribution, from which the final models for inference are sampled. We conducted experiments on Chinese-English and English-German translation tasks and the results shows that our method makes a better trade-off between diversity and accuracy.
Transformer model has been widely used on machine translation tasks and obtained state-of-the-art results. In this paper, we report an interesting phenomenon in its encoder-decoder multi-head attention: different attention heads of the final decoder layer align to different word translation candidates. We empirically verify this discovery and propose a method to generate diverse translations by manipulating heads. Furthermore, we make use of these diverse translations with the back-translation technique for better data augmentation. Experiment results show that our method generates diverse translations without severe drop in translation quality. Experiments also show that back-translation with these diverse translations could bring significant improvement on performance on translation tasks. An auxiliary experiment of conversation response generation task proves the effect of diversity as well.
A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data. To help satisfy this elementary requirement, we introduce the initial release of the Taskmaster-1 dataset which includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken Wizard of Oz (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is self-dialog in which crowdsourced workers write the entire dialog themselves. We do not restrict the workers to detailed scripts or to a small knowledge base and hence we observe that our dataset contains more realistic and diverse conversations in comparison to existing datasets. We offer several baseline models including state of the art neural seq2seq architectures with benchmark performance as well as qualitative human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost effective approach which avoids the requirement of complex annotation schema. The layer of abstraction between the dialog model and the service provider API allows for a given model to interact with multiple services that provide similar functionally. Finally, the dataset will evoke interest in written vs. spoken language, discourse patterns, error handling and other linguistic phenomena related to dialog system research, development and design.
In this paper, we investigate the diversity aspect of paraphrase generation. Prior deep learning models employ either decoding methods or add random input noise for varying outputs. We propose a simple method Diverse Paraphrase Generation (D-PAGE), which extends neural machine translation (NMT) models to support the generation of diverse paraphrases with implicit rewriting patterns. Our experimental results on two real-world benchmark datasets demonstrate that our model generates at least one order of magnitude more diverse outputs than the baselines in terms of a new evaluation metric Jeffreys Divergence. We have also conducted extensive experiments to understand various properties of our model with a focus on diversity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا