Do you want to publish a course? Click here

Oriented RepPoints for Aerial Object Detection

82   0   0.0 ( 0 )
 Added by Wentong Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In contrast to the oriented bounding boxes, point set representation has great potential to capture the detailed structure of instances with the arbitrary orientations, large aspect ratios and dense distribution in aerial images. However, the conventional point set-based approaches are handcrafted with the fixed locations using points-to-points supervision, which hurts their flexibility on the fine-grained feature extraction. To address these limitations, in this paper, we propose a novel approach to aerial object detection, named Oriented RepPoints. Specifically, we suggest to employ a set of adaptive points to capture the geometric and spatial information of the arbitrary-oriented objects, which is able to automatically arrange themselves over the object in a spatial and semantic scenario. To facilitate the supervised learning, the oriented conversion function is proposed to explicitly map the adaptive point set into an oriented bounding box. Moreover, we introduce an effective quality assessment measure to select the point set samples for training, which can choose the representative items with respect to their potentials on orientated object detection. Furthermore, we suggest a spatial constraint to penalize the outlier points outside the ground-truth bounding box. In addition to the traditional evaluation metric mAP focusing on overlap ratio, we propose a new metric mAOE to measure the orientation accuracy that is usually neglected in the previous studies on oriented object detection. Experiments on three widely used datasets including DOTA, HRSC2016 and UCAS-AOD demonstrate that our proposed approach is effective.



rate research

Read More

Current state-of-the-art two-stage detectors generate oriented proposals through time-consuming schemes. This diminishes the detectors speed, thereby becoming the computational bottleneck in advanced oriented object detection systems. This work proposes an effective and simple oriented object detection framework, termed Oriented R-CNN, which is a general two-stage oriented detector with promising accuracy and efficiency. To be specific, in the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner. The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them. Without tricks, oriented R-CNN with ResNet50 achieves state-of-the-art detection accuracy on two commonly-used datasets for oriented object detection including DOTA (75.87% mAP) and HRSC2016 (96.50% mAP), while having a speed of 15.1 FPS with the image size of 1024$times$1024 on a single RTX 2080Ti. We hope our work could inspire rethinking the design of oriented detectors and serve as a baseline for oriented object detection. Code is available at https://github.com/jbwang1997/OBBDetection.
131 - Jiaming Han , Jian Ding , Jie Li 2020
The past decade has witnessed significant progress on detecting objects in aerial images that are often distributed with large scale variations and arbitrary orientations. However most of existing methods rely on heuristically defined anchors with different scales, angles and aspect ratios and usually suffer from severe misalignment between anchor boxes and axis-aligned convolutional features, which leads to the common inconsistency between the classification score and localization accuracy. To address this issue, we propose a Single-shot Alignment Network (S$^2$A-Net) consisting of two modules: a Feature Alignment Module (FAM) and an Oriented Detection Module (ODM). The FAM can generate high-quality anchors with an Anchor Refinement Network and adaptively align the convolutional features according to the anchor boxes with a novel Alignment Convolution. The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy. Besides, we further explore the approach to detect objects in large-size images, which leads to a better trade-off between speed and accuracy. Extensive experiments demonstrate that our method can achieve state-of-the-art performance on two commonly used aerial objects datasets (i.e., DOTA and HRSC2016) while keeping high efficiency. The code is available at https://github.com/csuhan/s2anet.
Object detection with Transformers (DETR) has achieved a competitive performance over traditional detectors, such as Faster R-CNN. However, the potential of DETR remains largely unexplored for the more challenging task of arbitrary-oriented object detection problem. We provide the first attempt and implement Oriented Object DEtection with TRansformer ($bf O^2DETR$) based on an end-to-end network. The contributions of $rm O^2DETR$ include: 1) we provide a new insight into oriented object detection, by applying Transformer to directly and efficiently localize objects without a tedious process of rotated anchors as in conventional detectors; 2) we design a simple but highly efficient encoder for Transformer by replacing the attention mechanism with depthwise separable convolution, which can significantly reduce the memory and computational cost of using multi-scale features in the original Transformer; 3) our $rm O^2DETR$ can be another new benchmark in the field of oriented object detection, which achieves up to 3.85 mAP improvement over Faster R-CNN and RetinaNet. We simply fine-tune the head mounted on $rm O^2DETR$ in a cascaded architecture and achieve a competitive performance over SOTA in the DOTA dataset.
Recently, the study on object detection in aerial images has made tremendous progress in the community of computer vision. However, most state-of-the-art methods tend to develop elaborate attention mechanisms for the space-time feature calibrations with high computational complexity, while surprisingly ignoring the importance of feature calibrations in channels. In this work, we propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance channel communications in a feature transformer fashion, which can adaptively determine the calibration weights for each channel based on the global feature affinity-pairs. Specifically, given a set of feature maps, CG first computes the feature similarity between each channel and the remaining channels as the intermediary calibration guidance. Then, re-representing each channel by aggregating all the channels weighted together via the guidance. Our CG can be plugged into any deep neural network, which is named as CG-Net. To demonstrate its effectiveness and efficiency, extensive experiments are carried out on both oriented and horizontal object detection tasks of aerial images. Results on two challenging benchmarks (i.e., DOTA and HRSC2016) demonstrate that our CG-Net can achieve state-of-the-art performance in accuracy with a fair computational overhead. https://github.com/WeiZongqi/CG-Net
125 - Jiaming Han , Jian Ding , Nan Xue 2021
Recently, object detection in aerial images has gained much attention in computer vision. Different from objects in natural images, aerial objects are often distributed with arbitrary orientation. Therefore, the detector requires more parameters to encode the orientation information, which are often highly redundant and inefficient. Moreover, as ordinary CNNs do not explicitly model the orientation variation, large amounts of rotation augmented data is needed to train an accurate object detector. In this paper, we propose a Rotation-equivariant Detector (ReDet) to address these issues, which explicitly encodes rotation equivariance and rotation invariance. More precisely, we incorporate rotation-equivariant networks into the detector to extract rotation-equivariant features, which can accurately predict the orientation and lead to a huge reduction of model size. Based on the rotation-equivariant features, we also present Rotation-invariant RoI Align (RiRoI Align), which adaptively extracts rotation-invariant features from equivariant features according to the orientation of RoI. Extensive experiments on several challenging aerial image datasets DOTA-v1.0, DOTA-v1.5 and HRSC2016, show that our method can achieve state-of-the-art performance on the task of aerial object detection. Compared with previous best results, our ReDet gains 1.2, 3.5 and 2.6 mAP on DOTA-v1.0, DOTA-v1.5 and HRSC2016 respectively while reducing the number of parameters by 60% (313 Mb vs. 121 Mb). The code is available at: url{https://github.com/csuhan/ReDet}.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا