No Arabic abstract
The advances in pre-trained models (e.g., BERT, XLNET and etc) have largely revolutionized the predictive performance of various modern natural language processing tasks. This allows corporations to provide machine learning as a service (MLaaS) by encapsulating fine-tuned BERT-based models as commercial APIs. However, previous works have discovered a series of vulnerabilities in BERT- based APIs. For example, BERT-based APIs are vulnerable to both model extraction attack and adversarial example transferrability attack. However, due to the high capacity of BERT-based APIs, the fine-tuned model is easy to be overlearned, what kind of information can be leaked from the extracted model remains unknown and is lacking. To bridge this gap, in this work, we first present an effective model extraction attack, where the adversary can practically steal a BERT-based API (the target/victim model) by only querying a limited number of queries. We further develop an effective attribute inference attack to expose the sensitive attribute of the training data used by the BERT-based APIs. Our extensive experiments on benchmark datasets under various realistic settings demonstrate the potential vulnerabilities of BERT-based APIs.
Inference based techniques are one of the major approaches to analyze DNS data and detecting malicious domains. The key idea of inference techniques is to first define associations between domains based on features extracted from DNS data. Then, an inference algorithm is deployed to infer potential malicious domains based on their direct/indirect associations with known malicious ones. The way associations are defined is key to the effectiveness of an inference technique. It is desirable to be both accurate (i.e., avoid falsely associating domains with no meaningful connections) and with good coverage (i.e., identify all associations between domains with meaningful connections). Due to the limited scope of information provided by DNS data, it becomes a challenge to design an association scheme that achieves both high accuracy and good coverage. In this paper, we propose a new association scheme to identify domains controlled by the same entity. Our key idea is an in-depth analysis of active DNS data to accurately separate public IPs from dedicated ones, which enables us to build high-quality associations between domains. Our scheme identifies many meaningful connections between domains that are discarded by existing state-of-the-art approaches. Our experimental results show that the proposed association scheme not only significantly improves the domain coverage compared to existing approaches but also achieves better detection accuracy. Existing path-based inference algorithm is specifically designed for DNS data analysis. It is effective but computationally expensive. As a solution, we investigate the effectiveness of combining our association scheme with the generic belief propagation algorithm. Through comprehensive experiments, we show that this approach offers significant efficiency and scalability improvement with only minor negative impact of detection accuracy.
We show how the mathematical structure of large-deviation principles matches well with the concept of coarse-graining. For those systems with a large-deviation principle, this may lead to a general approach to coarse-graining through the variational form of the large-deviation functional.
Machine-learning-as-a-service (MLaaS) has attracted millions of users to their outperforming sophisticated models. Although published as black-box APIs, the valuable models behind these services are still vulnerable to imitation attacks. Recently, a series of works have demonstrated that attackers manage to steal or extract the victim models. Nonetheless, none of the previous stolen models can outperform the original black-box APIs. In this work, we take the first step of showing that attackers could potentially surpass victims via unsupervised domain adaptation and multi-victim ensemble. Extensive experiments on benchmark datasets and real-world APIs validate that the imitators can succeed in outperforming the original black-box models. We consider this as a milestone in the research of imitation attack, especially on NLP APIs, as the superior performance could influence the defense or even publishing strategy of API providers.
Machine learning (ML) applications are increasingly prevalent. Protecting the confidentiality of ML models becomes paramount for two reasons: (a) a model can be a business advantage to its owner, and (b) an adversary may use a stolen model to find transferable adversarial examples that can evade classification by the original model. Access to the model can be restricted to be only via well-defined prediction APIs. Nevertheless, prediction APIs still provide enough information to allow an adversary to mount model extraction attacks by sending repeated queries via the prediction API. In this paper, we describe new model extraction attacks using novel approaches for generating synthetic queries, and optimizing training hyperparameters. Our attacks outperform state-of-the-art model extraction in terms of transferability of both targeted and non-targeted adversarial examples (up to +29-44 percentage points, pp), and prediction accuracy (up to +46 pp) on two datasets. We provide take-aways on how to perform effective model extraction attacks. We then propose PRADA, the first step towards generic and effective detection of DNN model extraction attacks. It analyzes the distribution of consecutive API queries and raises an alarm when this distribution deviates from benign behavior. We show that PRADA can detect all prior model extraction attacks with no false positives.
Graph data, such as chemical networks and social networks, may be deemed confidential/private because the data owner often spends lots of resources collecting the data or the data contains sensitive information, e.g., social relationships. Recently, neural networks were extended to graph data, which are known as graph neural networks (GNNs). Due to their superior performance, GNNs have many applications, such as healthcare analytics, recommender systems, and fraud detection. In this work, we propose the first attacks to steal a graph from the outputs of a GNN model that is trained on the graph. Specifically, given a black-box access to a GNN model, our attacks can infer whether there exists a link between any pair of nodes in the graph used to train the model. We call our attacks link stealing attacks. We propose a threat model to systematically characterize an adversarys background knowledge along three dimensions which in total leads to a comprehensive taxonomy of 8 different link stealing attacks. We propose multiple novel methods to realize these 8 attacks. Extensive experiments on 8 real-world datasets show that our attacks are effective at stealing links, e.g., AUC (area under the ROC curve) is above 0.95 in multiple cases. Our results indicate that the outputs of a GNN model reveal rich information about the structure of the graph used to train the model.