Do you want to publish a course? Click here

A variant of the prime number theorem

212   0   0.0 ( 0 )
 Added by Zhishan Yang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $Lambda(n)$ be the von Mangoldt function, and let $[t]$ be the integral part of real number $t$. In this note, we prove that for any $varepsilon>0$ the asymptotic formula $$ sum_{nle x} LambdaBig(Big[frac{x}{n}Big]Big) = xsum_{dge 1} frac{Lambda(d)}{d(d+1)} + O_{varepsilon}big(x^{9/19+varepsilon}big) qquad (xtoinfty)$$ holds. This improves a recent result of Bordell`es, which requires $frac{97}{203}$ in place of $frac{9}{19}$.



rate research

Read More

62 - Florian K. Richter 2020
Let $Omega(n)$ denote the number of prime factors of $n$. We show that for any bounded $fcolonmathbb{N}tomathbb{C}$ one has [ frac{1}{N}sum_{n=1}^N, f(Omega(n)+1)=frac{1}{N}sum_{n=1}^N, f(Omega(n))+mathrm{o}_{Ntoinfty}(1). ] This yields a new elementary proof of the Prime Number Theorem.
112 - Hai-Liang Wu , Li-Yuan Wang 2021
In this paper, with the help of the theory of matrices and finite fields we generalize Zolotarevs theorem to an arbitrary finite dimensional vector space over $mathbb{F}_q$, where $mathbb{F}_q$ denotes the finite field with $q$ elements.
88 - Xianchang Meng 2018
We consider the summatory function of the number of prime factors for integers $leq x$ over arithmetic progressions. Numerical experiments suggest that some arithmetic progressions consist more number of prime factors than others. Greg Martin conjectured that the difference of the summatory functions should attain a constant sign for all sufficiently large $x$. In this paper, we provide strong evidence for Greg Martins conjecture. Moreover, we derive a general theorem for arithmetic functions from the Selberg class.
Let $Gamma=PSL(2,Z[i])$ be the Picard group and $H^3$ be the three-dimensional hyperbolic space. We study the Prime Geodesic Theorem for the quotient $Gamma setminus H^3$, called the Picard manifold, obtaining an error term of size $O(X^{3/2+theta/2+epsilon})$, where $theta$ denotes a subconvexity exponent for quadratic Dirichlet $L$-functions defined over Gaussian integers.
We develop a new method for studying sums of Kloosterman sums related to the spectral exponential sum. As a corollary, we obtain a new proof of the estimate of Soundararajan and Young for the error term in the prime geodesic theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا