No Arabic abstract
Let $Gamma=PSL(2,Z[i])$ be the Picard group and $H^3$ be the three-dimensional hyperbolic space. We study the Prime Geodesic Theorem for the quotient $Gamma setminus H^3$, called the Picard manifold, obtaining an error term of size $O(X^{3/2+theta/2+epsilon})$, where $theta$ denotes a subconvexity exponent for quadratic Dirichlet $L$-functions defined over Gaussian integers.
We develop a new method for studying sums of Kloosterman sums related to the spectral exponential sum. As a corollary, we obtain a new proof of the estimate of Soundararajan and Young for the error term in the prime geodesic theorem.
Let $Lambda(n)$ be the von Mangoldt function, and let $[t]$ be the integral part of real number $t$. In this note, we prove that for any $varepsilon>0$ the asymptotic formula $$ sum_{nle x} LambdaBig(Big[frac{x}{n}Big]Big) = xsum_{dge 1} frac{Lambda(d)}{d(d+1)} + O_{varepsilon}big(x^{9/19+varepsilon}big) qquad (xtoinfty)$$ holds. This improves a recent result of Bordell`es, which requires $frac{97}{203}$ in place of $frac{9}{19}$.
Let $Omega(n)$ denote the number of prime factors of $n$. We show that for any bounded $fcolonmathbb{N}tomathbb{C}$ one has [ frac{1}{N}sum_{n=1}^N, f(Omega(n)+1)=frac{1}{N}sum_{n=1}^N, f(Omega(n))+mathrm{o}_{Ntoinfty}(1). ] This yields a new elementary proof of the Prime Number Theorem.
Stewart (2013) proved that the biggest prime divisor of the $n$th term of a Lucas sequence of integers grows quicker than $n$, answering famous questions of ErdH{o}s and Schinzel. In this note we obtain a fully explicit and, in a sense, uniform version of Stewarts result.
On complete noncompact Riemannian manifolds with non-negative Ricci curvature, Li-Schoen proved the uniform Poincare inequality for any ge odesic ball. In this note, we obtain the sharp lower bound of the first Dirichlet eigenvalue of such geodesic balls, which implies the sharp Poincare inequality for geodesic balls.