No Arabic abstract
With the emergence of Internet-of-Things (IoT) and ever-increasing demand for the newly connected devices, there is a need for more effective storage and processing paradigms to cope with the data generated from these devices. In this study, we have discussed different paradigms for data processing and storage including Cloud, Fog, and Edge computing models and their suitability in integrating with the IoT. Moreover, a detailed discussion on low latency and massive connectivity requirements of future cellular networks in accordance with machine-type communication (MTC) is also presented. Furthermore, the need to bring IoT devices to Internet connectivity and a standardized protocol stack to regulate the data transmission between these devices is also addressed while keeping in view the resource constraint nature of IoT devices.
Simplicial homology is a tool that provides a mathematical way to compute the connectivity and the coverage of a cellular network without any node location information. In this article, we use simplicial homology in order to not only compute the topology of a cellular network, but also to discover the clusters of nodes still with no location information. We propose three algorithms for the management of future cellular networks. The first one is a frequency auto-planning algorithm for the self-configuration of future cellular networks. It aims at minimizing the number of planned frequencies while maximizing the usage of each one. Then, our energy conservation algorithm falls into the self-optimization feature of future cellular networks. It optimizes the energy consumption of the cellular network during off-peak hours while taking into account both coverage and user traffic. Finally, we present and discuss the performance of a disaster recovery algorithm using determinantal point processes to patch coverage holes.
Fifth-generation (5G) systems will extensively employ radio access network (RAN) softwarization. This key innovation enables the instantiation of virtual cellular networks running on different slices of the shared physical infrastructure. In this paper, we propose the concept of Private Cellular Connectivity as a Service (PCCaaS), where infrastructure providers deploy covert network slices known only to a subset of users. We then present SteaLTE as the first realization of a PCCaaS-enabling system for cellular networks. At its core, SteaLTE utilizes wireless steganography to disguise data as noise to adversarial receivers. Differently from previous work, however, it takes a full-stack approach to steganography, contributing an LTE-compliant steganographic protocol stack for PCCaaS-based communications, and packet schedulers and operations to embed covert data streams on top of traditional cellular traffic (primary traffic). SteaLTE balances undetectability and performance by mimicking channel impairments so that covert data waveforms are almost indistinguishable from noise. We evaluate the performance of SteaLTE on an indoor LTE-compliant testbed under different traffic profiles, distance and mobility patterns. We further test it on the outdoor PAWR POWDER platform over long-range cellular links. Results show that in most experiments SteaLTE imposes little loss of primary traffic throughput in presence of covert data transmissions (< 6%), making it suitable for undetectable PCCaaS networking.
Ultra-low latency supported by the fifth generation (5G) give impetus to the prosperity of many wireless network applications, such as autonomous driving, robotics, telepresence, virtual reality and so on. Ultra-low latency is not achieved in a moment, but requires long-term evolution of network structure and key enabling communication technologies. In this paper, we provide an evolutionary overview of low latency in mobile communication systems, including two different evolutionary perspectives: 1) network architecture; 2) physical layer air interface technologies. We firstly describe in detail the evolution of communication network architecture from the second generation (2G) to 5G, highlighting the key points reducing latency. Moreover, we review the evolution of key enabling technologies in the physical layer from 2G to 5G, which is also aimed at reducing latency. We also discussed the challenges and future research directions for low latency in network architecture and physical layer.
Ultra Reliable Low Latency Communications (URLLC) is an important challenge for the next generation wireless networks, which poses very strict requirements to the delay and packet loss ratio. Satisfaction is hardly possible without introducing additional functionality to the existing communication technologies. In the paper, we propose and study an approach to enable URLLC in Wi-Fi networks by exploiting an additional radio similar to that of IEEE 802.11ba. With extensive simulation, we show that our approach allows decreasing the delay by orders of magnitude, while the throughput of non-URLLC devices is reduced insignificantly.
High performance rack-scale offerings package disaggregated pools of compute, memory and storage hardware in a single rack to run diverse workloads with varying requirements, including applications that need low and predictable latency. The intra-rack network is typically high speed Ethernet, which can suffer from congestion leading to packet drops and may not satisfy the stringent tail latency requirements for some workloads (including remote memory/storage accesses). In this paper, we design a Predictable Low Latency(PL2) network architecture for rack-scale systems with Ethernet as interconnecting fabric. PL2 leverages programmable Ethernet switches to carefully schedule packets such that they incur no loss with NIC and switch queues maintained at small, near-zero levels. In our 100 Gbps rack-prototype, PL2 keeps 99th-percentile memcached RPC latencies under 60us even when the RPCs compete with extreme offered-loads of 400%, without losing traffic. Network transfers for a machine learning training task complete 30% faster than a receiver-driven scheme implementation modeled after Homa (222ms vs 321ms 99%ile latency per iteration).