Do you want to publish a course? Click here

A Robust and Generalized Framework for Adversarial Graph Embedding

150   0   0.0 ( 0 )
 Added by Xingcheng Fu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph embedding is essential for graph mining tasks. With the prevalence of graph data in real-world applications, many methods have been proposed in recent years to learn high-quality graph embedding vectors various types of graphs. However, most existing methods usually randomly select the negative samples from the original graph to enhance the training data without considering the noise. In addition, most of these methods only focus on the explicit graph structures and cannot fully capture complex semantics of edges such as various relationships or asymmetry. In order to address these issues, we propose a robust and generalized framework for adversarial graph embedding based on generative adversarial networks. Inspired by generative adversarial network, we propose a robust and generalized framework for adversarial graph embedding, named AGE. AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution, and enables the discriminator and generator to jointly learn each nodes robust and generalized representation. Based on this framework, we propose three models to handle three types of graph data and derive the corresponding optimization algorithms, i.e., UG-AGE and DG-AGE for undirected and directed homogeneous graphs, respectively, and HIN-AGE for heterogeneous information networks. Extensive experiments show that our methods consistently and significantly outperform existing state-of-the-art methods across multiple graph mining tasks, including link prediction, node classification, and graph reconstruction.



rate research

Read More

146 - Heng Chang , Yu Rong , Tingyang Xu 2021
With the success of the graph embedding model in both academic and industry areas, the robustness of graph embedding against adversarial attack inevitably becomes a crucial problem in graph learning. Existing works usually perform the attack in a white-box fashion: they need to access the predictions/labels to construct their adversarial loss. However, the inaccessibility of predictions/labels makes the white-box attack impractical to a real graph learning system. This paper promotes current frameworks in a more general and flexible sense -- we demand to attack various kinds of graph embedding models with black-box driven. We investigate the theoretical connections between graph signal processing and graph embedding models and formulate the graph embedding model as a general graph signal process with a corresponding graph filter. Therefore, we design a generalized adversarial attacker: GF-Attack. Without accessing any labels and model predictions, GF-Attack can perform the attack directly on the graph filter in a black-box fashion. We further prove that GF-Attack can perform an effective attack without knowing the number of layers of graph embedding models. To validate the generalization of GF-Attack, we construct the attacker on four popular graph embedding models. Extensive experiments validate the effectiveness of GF-Attack on several benchmark datasets.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
Graph is a natural representation of data for a variety of real-word applications, such as knowledge graph mining, social network analysis and biological network comparison. For these applications, graph embedding is crucial as it provides vector representations of the graph. One limitation of existing graph embedding methods is that their embedding optimization procedures are disconnected from the target application. In this paper, we propose a novel approach, namely Customized Graph Embedding (CGE) to tackle this problem. The CGE algorithm learns customized vector representations of graph nodes by differentiating the importance of distinct graph paths automatically for a specific application. Extensive experiments were carried out on a diverse set of node classification datasets, which demonstrate strong performances of CGE and provide deep insights into the model.
73 - Xinyi Zhang , Lihui Chen 2021
Heterogeneous information networks(HINs) become popular in recent years for its strong capability of modelling objects with abundant information using explicit network structure. Network embedding has been proved as an effective method to convert information networks into lower-dimensional space, whereas the core information can be well preserved. However, traditional network embedding algorithms are sub-optimal in capturing rich while potentially incompatible semantics provided by HINs. To address this issue, a novel meta-path-based HIN representation learning framework named mSHINE is designed to simultaneously learn multiple node representations for different meta-paths. More specifically, one representation learning module inspired by the RNN structure is developed and multiple node representations can be learned simultaneously, where each representation is associated with one respective meta-path. By measuring the relevance between nodes with the designed objective function, the learned module can be applied in downstream link prediction tasks. A set of criteria for selecting initial meta-paths is proposed as the other module in mSHINE which is important to reduce the optimal meta-path selection cost when no prior knowledge of suitable meta-paths is available. To corroborate the effectiveness of mSHINE, extensive experimental studies including node classification and link prediction are conducted on five real-world datasets. The results demonstrate that mSHINE outperforms other state-of-the-art HIN embedding methods.
386 - Meiqi Zhu , Xiao Wang , Chuan Shi 2021
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا