Do you want to publish a course? Click here

Interrelations between Astrochemistry and Galactic Dynamics

89   0   0.0 ( 0 )
 Added by Edgar Mendoza
 Publication date 2021
  fields Physics
and research's language is English
 Authors E. Mendoza




Ask ChatGPT about the research

This paper presents a review of ideas that interconnect Astrochemistry and Galactic Dynamics. Since these two areas are vast and not recent, each one has already been covered separately by several reviews. After a general historical introduction, and a needed quick review of processes like the stellar nucleosynthesis which gives the base to understand the interstellar formation of simple chemical compounds (H2, CO, NH3 and H2O), we focus on a number of topics which are at the crossing of the two areas, Dynamics and Astrochemistry. Astrochemistry is a flourishing field which intends to study the presence and formation of molecules as well as the influence of them into the structure, evolution and dynamics of astronomical objects. The progress in the knowledge on the existence of new complex molecules and of their process of formation originates from the observational, experimental and theoretical areas which compose the field. The interfacing areas include star formation, protoplanetary disks, the role of the spiral arms and the chemical abundance gradients in the galactic disk. It often happens that the physical conditions in some regions of the ISM are only revealed by means of molecular observations. To organise a classification of chemical evolution processes, we discuss about how astrochemistry can act in three different contexts: i. the chemistry of the early universe, including external galaxies, ii. star forming regions, and iii. AGB stars and circumstellar envelopes. We mention that our research is stimulated by plans for instruments and projects, such as the on-going LLAMA, which consists in the construction of a 12m sub-mm radio telescope in the Andes. Thus, modern and new facilities can play a key role in new discoveries not only in astrochemistry but also in radio astronomy and related areas. Furthermore, the research of the origin of life is also a stimulating perspective.



rate research

Read More

We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of 0D and 1D interstellar sources.
At the low temperatures ($sim$10 K) and high densities ($sim$100,000 H$_2$ molecules per cc) of molecular cloud cores and protostellar envelopes, a large amount of molecular species (in particular those containing C and O) freeze-out onto dust grain surfaces. It is in these regions that the deuteration of H$_3^+$ becomes very efficient, with a sharp abundance increase of H$_2$D$^+$ and D$_2$H$^+$. The multi-deuterated forms of H$_3^+$ participate in an active chemistry: (i) their collision with neutral species produces deuterated molecules such as the commonly observed N$_2$D$^+$, DCO$^+$ and multi-deuterated NH$_3$; (ii) their dissociative electronic recombination increases the D/H atomic ratio by several orders of magnitude above the D cosmic abundance, thus allowing deuteration of molecules (e.g. CH$_3$OH and H$_2$O) on the surface of dust grains. Deuterated molecules are the main diagnostic tools of dense and cold interstellar clouds, where the first steps toward star and protoplanetary disk formation take place. Recent observations of deuterated molecules are reviewed and discussed in view of astrochemical models inclusive of spin-state chemistry. We present a new comparison between models based on complete scrambling (to calculate branching ratio tables for reactions between chemical species that include protons and/or deuterons) and models based on non-scrambling (proton hop) methods, showing that the latter best agree with observations of NH$_3$ deuterated isotopologues and their different nuclear spin symmetry states.
53 - Karin I. Oberg 2016
The interstellar medium is characterized by a rich and diverse chemistry. Many of its complex organic molecules are proposed to form through radical chemistry in icy grain mantles. Radicals form readily when interstellar ices (composed of water and other volatiles) are exposed to UV photons and other sources of dissociative radiation, and, if sufficiently mobile, the radicals can react to form larger, more complex molecules. The resulting complex organic molecules (COMs) accompany star and planet formation, and may eventually seed the origins of life on nascent planets. Experiments of increasing sophistication have demonstrated that known interstellar COMs as well as the prebiotically interesting amino acids can form through ice photochemistry. We review these experiments and discuss the qualitative and quantitative kinetic and mechanistic constraints they have provided. We finally compare the effects of UV radiation with those of three other potential sources of radical production and chemistry in interstellar ices: electrons, ions and X-rays.
In their evolution, star-forming galaxies are known to follow scaling relations between some fundamental physical quantities, such as the mass-metallicity and the main sequence relations. We aim at studying the evolution of galaxies that, at a given redshift, lie simultaneously on the mass-metallicity and main sequence relations (MZR, MSR). To this aim, we use the analytical, leaky-box chemical evolution model of Spitoni et al. (2017), in which galaxy evolution is described by an infall timescale $tau$ and a wind efficiency $lambda$. We provide a detailed analysis of the temporal evolution of galactic metallicity, stellar mass, mass-weighted age and gas fraction. The evolution of the galaxies lying on the MZR and MSR at $zsim0.1$ suggests that the average infall time-scale in two different bins of stellar masses ($M_{star}<10^{10} M_{odot}$ and $M_{star}>10^{10} M_{odot}$) decreases with decreasing redshift. This means that at each redshift, only the youngest galaxies can be assembled on the shortest timescales and still belong to the star-forming MSR. In the lowest mass bin, a decrease of the median $tau$ is accompanied by an increase of the median $lambda$ value. This implies that systems which have formed at more recent times will need to eject a larger amount of mass to keep their metallicity at low values. Another important result is that galactic downsizing, as traced by the age-mass relation, is naturally recovered by imposing that local galaxies lie on both the MZR and MSR. Finally, we study the evolution of the hosts of C$_{rm IV}$ -selected AGN, which at $zsim 2$ follow a flat MZR, as found by Mignoli et al. (2019). If we impose that these systems lie on the MSR, at lower redshifts we find an inverted MZR, meaning that some additional processes must be at play in their evolution.
Planets form and obtain their compositions in disks of gas and dust around young stars. The chemical compositions of these planet-forming disks regulate all aspects of planetary compositions from bulk elemental inventories to access to water and reactive organics, i.e. a planets hospitality to life and its chemical origins. Disk chemical structures are in their turn governed by a combination of {it in situ} chemical processes, and inheritance of molecules from the preceding evolutionary stages of the star formation process. In this review we present our current understanding of the chemical processes active in pre- and protostellar environments that set the initial conditions for disks, and the disk chemical processes that evolve the chemical conditions during the first million years of planet formation. We review recent observational, laboratory and theoretical discoveries that have led to the present view of the chemical environment within which planets form, and their effects on the compositions of nascent planetary systems. We also discuss the many unknowns that remain and outline some possible pathways to addressing them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا