No Arabic abstract
COVID-19 has resulted in over 100 million infections and caused worldwide lock downs due to its high transmission rate and limited testing options. Current diagnostic tests can be expensive, limited in availability, time-intensive and require risky in-person appointments. It has been established that symptomatic COVID-19 seriously impairs normal functioning of the respiratory system, thus affecting the coughing acoustics. The 2021 DiCOVA Challenge @ INTERSPEECH was designed to find scientific and engineering insights to the question by enabling participants to analyze an acoustic dataset gathered from COVID-19 positive and non-COVID-19 individuals. In this report we describe our participation in the Challenge (Track 1). We achieved 82.37% AUC ROC on the blind test outperforming the Challenges baseline of 69.85%.
The COVID-19 pandemic has led to the saturation of public health services worldwide. In this scenario, the early diagnosis of SARS-Cov-2 infections can help to stop or slow the spread of the virus and to manage the demand upon health services. This is especially important when resources are also being stretched by heightened demand linked to other seasonal diseases, such as the flu. In this context, the organisers of the DiCOVA 2021 challenge have collected a database with the aim of diagnosing COVID-19 through the use of coughing audio samples. This work presents the details of the automatic system for COVID-19 detection from cough recordings presented by team PANACEA. This team consists of researchers from two European academic institutions and one company: EURECOM (France), University of Granada (Spain), and Biometric Vox S.L. (Spain). We developed several systems based on established signal processing and machine learning methods. Our best system employs a Teager energy operator cepstral coefficients (TECCs) based frontend and Light gradient boosting machine (LightGBM) backend. The AUC obtained by this system on the test set is 76.31% which corresponds to a 10% improvement over the official baseline.
Aiming to automatically detect COVID-19 from cough sounds, we propose a deep attentive multi-model fusion system evaluated on the Track-1 dataset of the DiCOVA 2021 challenge. Three kinds of representations are extracted, including hand-crafted features, image-from-audio-based deep representations, and audio-based deep representations. Afterwards, the best models on the three types of features are fused at both the feature level and the decision level. The experimental results demonstrate that the proposed attention-based fusion at the feature level achieves the best performance (AUC: 77.96%) on the test set, resulting in an 8.05% improvement over the official baseline.
This paper describes the ByteDance speaker diarization system for the fourth track of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). The VoxSRC-21 provides both the dev set and test set of VoxConverse for use in validation and a standalone test set for evaluation. We first collect the duration and signal-to-noise ratio (SNR) of all audio and find that the distribution of the VoxConverses test set and the VoxSRC-21s test set is more closer. Our system consists of voice active detection (VAD), speaker embedding extraction, spectral clustering followed by a re-clustering step based on agglomerative hierarchical clustering (AHC) and overlapped speech detection and handling. Finally, we integrate systems with different time scales using DOVER-Lap. Our best system achieves 5.15% of the diarization error rate (DER) on evaluation set, ranking the second at the diarization track of the challenge.
Automatic speech recognition (ASR) has been significantly advanced with the use of deep learning and big data. However improving robustness, including achieving equally good performance on diverse speakers and accents, is still a challenging problem. In particular, the performance of children speech recognition (CSR) still lags behind due to 1) the speech and language characteristics of childrens voice are substantially different from those of adults and 2) sizable open dataset for children speech is still not available in the research community. To address these problems, we launch the Children Speech Recognition Challenge (CSRC), as a flagship satellite event of IEEE SLT 2021 workshop. The challenge will release about 400 hours of Mandarin speech data for registered teams and set up two challenge tracks and provide a common testbed to benchmark the CSR performance. In this paper, we introduce the datasets, rules, evaluation method as well as baselines.
The INTERSPEECH 2021 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the COVID-19 Cough and COVID-19 Speech Sub-Challenges, a binary classification on COVID-19 infection has to be made based on coughing sounds and speech; in the Escalation SubChallenge, a three-way assessment of the level of escalation in a dialogue is featured; and in the Primates Sub-Challenge, four species vs background need to be classified. We describe the Sub-Challenges, baseline feature extraction, and classifiers based on the usual COMPARE and BoAW features as well as deep unsupervised representation learning using the AuDeep toolkit, and deep feature extraction from pre-trained CNNs using the Deep Spectrum toolkit; in addition, we add deep end-to-end sequential modelling, and partially linguistic analysis.