Do you want to publish a course? Click here

Human-AI Collaboration with Bandit Feedback

111   0   0.0 ( 0 )
 Added by Ruijiang Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Human-machine complementarity is important when neither the algorithm nor the human yield dominant performance across all instances in a given domain. Most research on algorithmic decision-making solely centers on the algorithms performance, while recent work that explores human-machine collaboration has framed the decision-making problems as classification tasks. In this paper, we first propose and then develop a solution for a novel human-machine collaboration problem in a bandit feedback setting. Our solution aims to exploit the human-machine complementarity to maximize decision rewards. We then extend our approach to settings with multiple human decision makers. We demonstrate the effectiveness of our proposed methods using both synthetic and real human responses, and find that our methods outperform both the algorithm and the human when they each make decisions on their own. We also show how personalized routing in the presence of multiple human decision-makers can further improve the human-machine team performance.

rate research

Read More

The rapid advancement of artificial intelligence (AI) is changing our lives in many ways. One application domain is data science. New techniques in automating the creation of AI, known as AutoAI or AutoML, aim to automate the work practices of data scientists. AutoAI systems are capable of autonomously ingesting and pre-processing data, engineering new features, and creating and scoring models based on a target objectives (e.g. accuracy or run-time efficiency). Though not yet widely adopted, we are interested in understanding how AutoAI will impact the practice of data science. We conducted interviews with 20 data scientists who work at a large, multinational technology company and practice data science in various business settings. Our goal is to understand their current work practices and how these practices might change with AutoAI. Reactions were mixed: while informants expressed concerns about the trend of automating their jobs, they also strongly felt it was inevitable. Despite these concerns, they remained optimistic about their future job security due to a view that the future of data science work will be a collaboration between humans and AI systems, in which both automation and human expertise are indispensable.
We argue that a key challenge in enabling usable and useful interactive task learning for intelligent agents is to facilitate effective Human-AI collaboration. We reflect on our past 5 years of efforts on designing, developing and studying the SUGILITE system, discuss the issues on incorporating recent advances in AI with HCI principles in mixed-initiative interactions and multi-modal interactions, and summarize the lessons we learned. Lastly, we identify several challenges and opportunities, and describe our ongoing work
Human and AI are increasingly interacting and collaborating to accomplish various complex tasks in the context of diverse application domains (e.g., healthcare, transportation, and creative design). Two dynamic, learning entities (AI and human) have distinct mental model, expertise, and ability; such fundamental difference/mismatch offers opportunities for bringing new perspectives to achieve better results. However, this mismatch can cause unexpected failure and result in serious consequences. While recent research has paid much attention to enhancing interpretability or explainability to allow machine to explain how it makes a decision for supporting humans, this research argues that there is urging the need for both human and AI should develop specific, corresponding ability to interact and collaborate with each other to form a human-AI team to accomplish superior results. This research introduces a conceptual framework called Co-Learning, in which people can learn with/from and grow with AI partners over time. We characterize three key concepts of co-learning: mutual understanding, mutual benefits, and mutual growth for facilitating human-AI collaboration on complex problem solving. We will present proof-of-concepts to investigate whether and how our approach can help human-AI team to understand and benefit each other, and ultimately improve productivity and creativity on creative problem domains. The insights will contribute to the design of Human-AI collaboration.
The use of automatic grading tools has become nearly ubiquitous in large undergraduate programming courses, and recent work has focused on improving the quality of automatically generated feedback. However, there is a relative lack of data directly comparing student outcomes when receiving computer-generated feedback and human-written feedback. This paper addresses this gap by splitting one 90-student class into two feedback groups and analyzing differences in the two cohorts performance. The class is an intro to AI with programming HW assignments. One group of students received detailed computer-generated feedback on their programming assignments describing which parts of the algorithms logic was missing; the other group additionally received human-written feedback describing how their programs syntax relates to issues with their logic, and qualitative (style) recommendations for improving their code. Results on quizzes and exam questions suggest that human feedback helps students obtain a better conceptual understanding, but analyses found no difference between the groups ability to collaborate on the final project. The course grade distribution revealed that students who received human-written feedback performed better overall; this effect was the most pronounced in the middle two quartiles of each group. These results suggest that feedback about the syntax-logic relation may be a primary mechanism by which human feedback improves student outcomes.
We propose incorporating human labelers in a model fine-tuning system that provides immediate user feedback. In our framework, human labelers can interactively query model predictions on unlabeled data, choose which data to label, and see the resulting effect on the models predictions. This bi-directional feedback loop allows humans to learn how the model responds to new data. Our hypothesis is that this rich feedback allows human labelers to create mental models that enable them to better choose which biases to introduce to the model. We compare human-selected points to points selected using standard active learning methods. We further investigate how the fine-tuning methodology impacts the human labelers performance. We implement this framework for fine-tuning high-resolution land cover segmentation models. Specifically, we fine-tune a deep neural network -- trained to segment high-resolution aerial imagery into different land cover classes in Maryland, USA -- to a new spatial area in New York, USA. The tight loop turns the algorithm and the human operator into a hybrid system that can produce land cover maps of a large area much more efficiently than the traditional workflows. Our framework has applications in geospatial machine learning settings where there is a practically limitless supply of unlabeled data, of which only a small fraction can feasibly be labeled through human efforts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا