Do you want to publish a course? Click here

de Sitter Decays to Infinity

79   0   0.0 ( 0 )
 Added by Benjamin Lillard
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bubbles of nothing are a class of vacuum decay processes present in some theories with compactified extra dimensions. We investigate the existence and properties of bubbles of nothing in models where the scalar pseudomoduli controlling the size of the extra dimensions are stabilized at positive vacuum energy, which is a necessary feature of any realistic model. We map the construction of bubbles of nothing to a four-dimensional Coleman-De Luccia problem and establish necessary conditions on the asymptotic behavior of the scalar potential for the existence of suitable solutions. We perform detailed analyses in the context of five-dimensional theories with metastable $text{dS}_4 times S^1$ vacua, using analytic approximations and numerical methods to calculate the decay rate. We find that bubbles of nothing sometimes exist in potentials with no ordinary Coleman-De Luccia decay process, and that in the examples we study, when both processes exist, the bubble of nothing decay rate is faster. Our methods can be generalized to other stabilizing potentials and internal manifolds.



rate research

Read More

Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter geometry exist, unless one modifies the near-boundary asymptotics of the bulk fields. In the holographic dual picture, this corresponds to coupling the UV CFT to a curved metric (possibly with a defect). Alternatively, the same may be achieved in a flat-space QFT with suitable variable scalar sources. With these ingredients, it is found that maximally symmetric, positive and negative curvature solutions with a stabilised brane position generically exist. The space of such solutions is studied in two different types of realisations of the self-tuning framework. In some regimes we observe a large hierarchy between the curvature on the brane and the boundary UV CFT curvature. This is a dynamical effect due to the self-stabilisation mechanism. This setup provides an alternative route to realising de Sitter space in string theory.
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space with a single volume modulus, but generalizations to single-field no-scale models with de Sitter vacua are also known. In this paper we generalize these de Sitter constructions to two- and multi-field models of the types occurring in string compactifications with more than one relevant modulus. We discuss the conditions for stability of the de Sitter solutions and holomorphy of the superpotential, and give examples whose superpotential contains only integer powers of the chiral fields.
Light scalars in inflationary spacetimes suffer from logarithmic infrared divergences at every order in perturbation theory. This corresponds to the scalar field values in different Hubble patches undergoing a random walk of quantum fluctuations, leading to a simple toy landscape on superhorizon scales, in which we can explore questions relevant to eternal inflation. However, for a sufficiently long period of inflation, the infrared divergences appear to spoil computability. Some form of renormalization group approach is thus motivated to resum the log divergences of conformal time. Such a resummation may provide insight into De Sitter holography. We present here a novel diagrammatic analysis of these infrared divergences and their resummation. Basic graph theory observations and momentum power counting for the in-in propagators allow a simple and insightful determination of the leading-log contributions. One thus sees diagrammatically how the superhorizon sector consists of a semiclassical theory with quantum noise evolved by a first-order, interacting classical equation of motion. This rigorously leads to the Stochastic Inflation ansatz developed by Starobinsky to cure the scalar infrared pathology nonperturbatively. Our approach is a controlled approximation of the underlying quantum field theory and is systematically improvable.
67 - M. Tanaka 1997
We have found that supersymmetry (SUSY) in curved space is broken softly. It is also found that Pauli-Villars regularization preserves the remaining symmetry, softly broken SUSY. Using it we computed the one-loop effective potential along a (classical) flat direction in a Wess-Zumino model in de Sitter space. The analysis is relevant to the Affleck-Dine mechanism for baryogenesis. The effective potential is unbounded from below: $V_{eff}(phi)to -3g^2H^2phi ^2 ln phi ^2 /16pi ^2$, where $phi$ is the scalar field along the flat direction, g is a typical coupling constant, and H is the Hubble parameter. This is identical with the effective potential which is obtained by using proper-time cutoff regularization. Since proper-time cutoff regularization is exact even at the large curvature region, the effective potential possesses softly broken SUSY and reliability in the large curvature region.
We study M-theory compactification on ${mathbb{T}^7/ mathbb{Z}_2^3}$ in the presence of a seven-flux, metric fluxes and KK monopoles. The effective four-dimensional supergravity has seven chiral multiplets whose couplings are specified by the $G_2$-structure of the internal manifold. We supplement the corresponding superpotential by a KKLT type non-perturbative exponential contribution for all, or for some of the seven moduli, and find a discrete set of supersymmetric Minkowski minima. We also study type IIA and type IIB string theory compactified on ${mathbb{T}^6/ mathbb{Z}_2^2}$. In type IIA, we use a six-flux, geometric fluxes and non-perturbative exponents. In type IIB theory, we use F and H fluxes, and non-geometric Q and P fluxes, corresponding to consistently gauged supergravity with certain embedding tensor components, emph{without non-perturbative exponents}. Also in these situations, we produce discrete Minkowski minima. Finally, to construct dS vacua starting from these Minkowski progenitors, we follow the procedure of mass production of dS vacua.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا