No Arabic abstract
Few-shot learning (FSL) is the task of learning to recognize previously unseen categories of images from a small number of training examples. This is a challenging task, as the available examples may not be enough to unambiguously determine which visual features are most characteristic of the considered categories. To alleviate this issue, we propose a method that additionally takes into account the names of the image classes. While the use of class names has already been explored in previous work, our approach differs in two key aspects. First, while previous work has aimed to directly predict visual prototypes from word embeddings, we found that better results can be obtained by treating visual and text-based prototypes separately. Second, we propose a simple strategy for learning class name embeddings using the BERT language model, which we found to substantially outperform the GloVe vectors that were used in previous work. We furthermore propose a strategy for dealing with the high dimensionality of these vectors, inspired by models for aligning cross-lingual word embeddings. We provide experiments on miniImageNet, CUB and tieredImageNet, showing that our approach consistently improves the state-of-the-art in metric-based FSL.
Metric learning is a widely used method for few shot learning in which the quality of prototypes plays a key role in the algorithm. In this paper we propose the trainable prototypes for distance measure instead of the artificial ones within the meta-training and task-training framework. Also to avoid the disadvantages that the episodic meta-training brought, we adopt non-episodic meta-training based on self-supervised learning. Overall we solve the few-shot tasks in two phases: meta-training a transferable feature extractor via self-supervised learning and training the prototypes for metric classification. In addition, the simple attention mechanism is used in both meta-training and task-training. Our method achieves state-of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification dataset, with about 20% increase compared to the available unsupervised few-shot learning methods.
Few-shot learning aims to recognize new categories using very few labeled samples. Although few-shot learning has witnessed promising development in recent years, most existing methods adopt an average operation to calculate prototypes, thus limited by the outlier samples. In this work, we propose a simple yet effective framework for few-shot classification, which can learn to generate preferable prototypes from few support data, with the help of an episodic prototype generator module. The generated prototype is meant to be close to a certain textit{targetproto{}} and is less influenced by outlier samples. Extensive experiments demonstrate the effectiveness of this module, and our approach gets a significant raise over baseline models, and get a competitive result compared to previous methods on textit{mini}ImageNet, textit{tiered}ImageNet, and cross-domain (textit{mini}ImageNet $rightarrow$ CUB-200-2011) datasets.
Most recent few-shot learning (FSL) methods are based on meta-learning with episodic training. In each meta-training episode, a discriminative feature embedding and/or classifier are first constructed from a support set in an inner loop, and then evaluated in an outer loop using a query set for model updating. This query set sample centered learning objective is however intrinsically limited in addressing the lack of training data problem in the support set. In this paper, a novel contrastive prototype learning with augmented embeddings (CPLAE) model is proposed to overcome this limitation. First, data augmentations are introduced to both the support and query sets with each sample now being represented as an augmented embedding (AE) composed of concatenated embeddings of both the original and augment
We improve zero-shot learning (ZSL) by incorporating common-sense knowledge in DNNs. We propose Common-Sense based Neuro-Symbolic Loss (CSNL) that formulates prior knowledge as novel neuro-symbolic loss functions that regularize visual-semantic embedding. CSNL forces visual features in the VSE to obey common-sense rules relating to hypernyms and attributes. We introduce two key novelties for improved learning: (1) enforcement of rules for a group instead of a single concept to take into account class-wise relationships, and (2) confidence margins inside logical operators that enable implicit curriculum learning and prevent premature overfitting. We evaluate the advantages of incorporating each knowledge source and show consistent gains over prior state-of-art methods in both conventional and generalized ZSL e.g. 11.5%, 5.5%, and 11.6% improvements on AWA2, CUB, and Kinetics respectively.
The aim of few-shot learning (FSL) is to learn how to recognize image categories from a small number of training examples. A central challenge is that the available training examples are normally insufficient to determine which visual features are most characteristic of the considered categories. To address this challenge, we organize these visual features into facets, which intuitively group features of the same kind (e.g. features that are relevant to shape, color, or texture). This is motivated from the assumption that (i) the importance of each facet differs from category to category and (ii) it is possible to predict facet importance from a pre-trained embedding of the category names. In particular, we propose an adaptive similarity measure, relying on predicted facet importance weights for a given set of categories. This measure can be used in combination with a wide array of existing metric-based methods. Experiments on miniImageNet and CUB show that our approach improves the state-of-the-art in metric-based FSL.