Do you want to publish a course? Click here

Finding All Bounded-Length Simple Cycles in a Directed Graph

68   0   0.0 ( 0 )
 Added by Anshul Gupta
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A new efficient algorithm is presented for finding all simple cycles that satisfy a length constraint in a directed graph. When the number of vertices is non-trivial, most cycle-finding problems are of practical interest for sparse graphs only. We show that for a class of sparse graphs in which the vertex degrees are almost uniform, our algorithm can find all cycles of length less than or equal to $k$ in $O((c+n)(k-1)d^k)$ steps, where $n$ is the number of vertices, $c$ is the total number of cycles discovered, $d$ is the average degree of the graphs vertices, and $k > 1$. While our analysis for the running time addresses only a class of sparse graphs, we provide empirical and experimental evidence of the efficiency of the algorithm for general sparse graphs. This algorithm is a significant improvement over the only other deterministic algorithm for this problem known to us; it also lends itself to massive parallelism. Experimental results of a serial implementation on some large real-world graphs are presented.

rate research

Read More

We present a linear-time algorithm for simplifying flow networks on directed planar graphs: Given a directed planar graph on $n$ vertices, a source vertex $s$ and a sink vertex $t$, our algorithm removes all the arcs that do not participate in any simple $s,t$-path in linear-time. The output graph produced by our algorithm satisfies the prerequisite needed by the $O(nlog n)$-time algorithm of Weihe [FOCS94 & JCSS97] for computing maximum $s,t$-flow in directed planar graphs. Previously, Weihes algorithm could not run in $O(nlog n)$-time due to the absence of the preprocessing step; all the preceding algorithms run in $tilde{Omega}(n^2)$-time [Misiolek-Chen, COCOON05 & IPL06; Biedl, Brejov{{a}} and Vinar, MFCS00]. Consequently, this provides an alternative $O(nlog n)$-time algorithm for computing maximum $s,t$-flow in directed planar graphs in addition to the known $O(nlog n)$-time algorithms [Borradaile-Klein, SODA06 & J.ACM09; Erickson, SODA10]. Our algorithm can be seen as a (truly) linear-time $s,t$-flow sparsifier for directed planar graphs, which runs faster than any maximum $s,t$-flow algorithm (which can also be seen of as a sparsifier). The simplified structures of the resulting graph might be useful in future developments of maximum $s,t$-flow algorithms in both directed and undirected planar graphs.
We describe a general purpose algorithm for counting simple cycles and simple paths of any length $ell$ on a (weighted di)graph on $N$ vertices and $M$ edges, achieving a time complexity of $Oleft(N+M+big(ell^omega+ellDeltabig) |S_ell|right)$. In this expression, $|S_ell|$ is the number of (weakly) connected induced subgraphs of $G$ on at most $ell$ vertices, $Delta$ is the maximum degree of any vertex and $omega$ is the exponent of matrix multiplication. We compare the algorithm complexity both theoretically and experimentally with most of the existing algorithms for the same task. These comparisons show that the algorithm described here is the best general purpose algorithm for the class of graphs where $(ell^{omega-1}Delta^{-1}+1) |S_ell|leq |text{Cycle}_ell|$, with $|text{Cycle}_ell|$ the total number of simple cycles of length at most $ell$, including backtracks and self-loops. On ErdH{o}s-Renyi random graphs, we find empirically that this happens when the edge probability is larger than circa $4/N$. In addition, we show that some real-world networks also belong to this class. Finally, the algorithm permits the enumeration of simple cycles and simple paths on networks where vertices are labeled from an alphabet on $n$ letters with a time complexity of $Oleft(N+M+big(n^ellell^omega+ellDeltabig) |S_ell|right)$. A Matlab implementation of the algorithm proposed here is available for download.
We consider the problem of placing arrow heads in directed graph drawings without them overlapping other drawn objects. This gives drawings where edge directions can be deduced unambiguously. We show hardness of the problem, present exact and heuristic algorithms, and report on a practical study.
The girth of a graph, i.e. the length of its shortest cycle, is a fundamental graph parameter. Unfortunately all known algorithms for computing, even approximately, the girth and girth-related structures in directed weighted $m$-edge and $n$-node graphs require $Omega(min{n^{omega}, mn})$ time (for $2leqomega<2.373$). In this paper, we drastically improve these runtimes as follows: * Multiplicative Approximations in Nearly Linear Time: We give an algorithm that in $widetilde{O}(m)$ time computes an $widetilde{O}(1)$-multiplicative approximation of the girth as well as an $widetilde{O}(1)$-multiplicative roundtrip spanner with $widetilde{O}(n)$ edges with high probability (w.h.p). * Nearly Tight Additive Approximations: For unweighted graphs and any $alpha in (0,1)$ we give an algorithm that in $widetilde{O}(mn^{1 - alpha})$ time computes an $O(n^alpha)$-additive approximation of the girth w.h.p, and partially derandomize it. We show that the runtime of our algorithm cannot be significantly improved without a breakthrough in combinatorial Boolean matrix multiplication. Our main technical contribution to achieve these results is the first nearly linear time algorithm for computing roundtrip covers, a directed graph decomposition concept key to previous roundtrip spanner constructions. Previously it was not known how to compute these significantly faster than $Omega(min{n^omega, mn})$ time. Given the traditional difficulty in efficiently processing directed graphs, we hope our techniques may find further applications.
We give algorithms with running time $2^{O({sqrt{k}log{k}})} cdot n^{O(1)}$ for the following problems. Given an $n$-vertex unit disk graph $G$ and an integer $k$, decide whether $G$ contains (1) a path on exactly/at least $k$ vertices, (2) a cycle on exactly $k$ vertices, (3) a cycle on at least $k$ vertices, (4) a feedback vertex set of size at most $k$, and (5) a set of $k$ pairwise vertex-disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time $2^{O(k^{0.75}log{k})} cdot n^{O(1)}$. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to $k^{O(1)}$ and there exists a solution that crosses every separator at most $O(sqrt{k})$ times. The running times of our algorithms are optimal up to the $log{k}$ factor in the exponent, assuming the Exponential Time Hypothesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا