Do you want to publish a course? Click here

An interpretable object detection based model for the diagnosis of neonatal lung diseases using Ultrasound images

382   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Over the last few decades, Lung Ultrasound (LUS) has been increasingly used to diagnose and monitor different lung diseases in neonates. It is a non invasive tool that allows a fast bedside examination while minimally handling the neonate. Acquiring a LUS scan is easy, but understanding the artifacts concerned with each respiratory disease is challenging. Mixed artifact patterns found in different respiratory diseases may limit LUS readability by the operator. While machine learning (ML), especially deep learning can assist in automated analysis, simply feeding the ultrasound images to an ML model for diagnosis is not enough to earn the trust of medical professionals. The algorithm should output LUS features that are familiar to the operator instead. Therefore, in this paper we present a unique approach for extracting seven meaningful LUS features that can be easily associated with a specific pathological lung condition: Normal pleura, irregular pleura, thick pleura, Alines, Coalescent B-lines, Separate B-lines and Consolidations. These artifacts can lead to early prediction of infants developing later respiratory distress symptoms. A single multi-class region proposal-based object detection model faster-RCNN (fRCNN) was trained on lower posterior lung ultrasound videos to detect these LUS features which are further linked to four common neonatal diseases. Our results show that fRCNN surpasses single stage models such as RetinaNet and can successfully detect the aforementioned LUS features with a mean average precision of 86.4%. Instead of a fully automatic diagnosis from images without any interpretability, detection of such LUS features leave the ultimate control of diagnosis to the clinician, which can result in a more trustworthy intelligent system.



rate research

Read More

Presently, Covid-19 is a serious threat to the world at large. Efforts are being made to reduce disease screening times and in the development of a vaccine to resist this disease, even as thousands succumb to it everyday. We propose a novel method of automated screening of diseases like Covid-19 and pneumonia from Chest X-Ray images with the help of Computer Vision. Unlike computer vision classification algorithms which come with heavy computational costs, we propose a knowledge distillation based approach which allows us to bring down the model depth, while preserving the accuracy. We make use of an augmentation of the standard distillation module with an auxiliary intermediate assistant network that aids in the continuity of the flow of information. Following this approach, we are able to build an extremely light student network, consisting of just 3 convolutional blocks without any compromise on accuracy. We thus propose a method of classification of diseases which can not only lead to faster screening, but can also operate seamlessly on low-end devices.
Lung cancer begins in the lungs and leading to the reason of cancer demise amid population in the creation. According to the American Cancer Society, which estimates about 27% of the deaths because of cancer. In the early phase of its evolution, lung cancer does not cause any symptoms usually. Many of the patients have been diagnosed in a developed phase where symptoms become more prominent, that results in poor curative treatment and high mortality rate. Computer Aided Detection systems are used to achieve greater accuracies for the lung cancer diagnosis. In this research exertion, we proposed a novel methodology for lung Segmentation on the basis of Fuzzy C-Means Clustering, Adaptive Thresholding, and Segmentation of Active Contour Model. The experimental results are analysed and presented.
In all developing and developed countries in the world, skin diseases are becoming a very frequent health problem for the humans of all age groups. Skin problems affect mental health, develop addiction to alcohol and drugs and sometimes causes social isolation. Considering the importance, we propose an automatic technique to detect three popular skin diseases- Leprosy, Tinea versicolor and Vitiligofrom the images of skin lesions. The proposed technique involves Weber local descriptor and Local binary pattern to represent texture pattern of the affected skin regions. This ensemble technique achieved 91.38% accuracy using multi-level support vector machine classifier, where features are extracted from different regions that are based on center of gravity. We have also applied some popular deep learn-ing networks such as MobileNet, ResNet_152, GoogLeNet,DenseNet_121, and ResNet_101. We get 89% accuracy using ResNet_101. The ensemble approach clearly outperform all of the used deep learning networks. This imaging tool will be useful for early skin disease screening.
71 - Wenqing Chu , Deng Cai 2016
Object detection is one of the most active areas in computer vision, which has made significant improvement in recent years. Current state-of-the-art object detection methods mostly adhere to the framework of regions with convolutional neural network (R-CNN) and only use local appearance features inside object bounding boxes. Since these approaches ignore the contextual information around the object proposals, the outcome of these detectors may generate a semantically incoherent interpretation of the input image. In this paper, we propose an ensemble object detection system which incorporates the local appearance, the contextual information in term of relationships among objects and the global scene based contextual feature generated by a convolutional neural network. The system is formulated as a fully connected conditional random field (CRF) defined on object proposals and the contextual constraints among object proposals are modeled as edges naturally. Furthermore, a fast mean field approximation method is utilized to inference in this CRF model efficiently. The experimental results demonstrate that our approach achieves a higher mean average precision (mAP) on PASCAL VOC 2007 datasets compared to the baseline algorithm Faster R-CNN.
Aerial imagery has been increasingly adopted in mission-critical tasks, such as traffic surveillance, smart cities, and disaster assistance. However, identifying objects from aerial images faces the following challenges: 1) objects of interests are often too small and too dense relative to the images; 2) objects of interests are often in different relative sizes; and 3) the number of objects in each category is imbalanced. A novel network structure, Points Estimated Network (PENet), is proposed in this work to answer these challenges. PENet uses a Mask Resampling Module (MRM) to augment the imbalanced datasets, a coarse anchor-free detector (CPEN) to effectively predict the center points of the small object clusters, and a fine anchor-free detector FPEN to locate the precise positions of the small objects. An adaptive merge algorithm Non-maximum Merge (NMM) is implemented in CPEN to address the issue of detecting dense small objects, and a hierarchical loss is defined in FPEN to further improve the classification accuracy. Our extensive experiments on aerial datasets visDrone and UAVDT showed that PENet achieved higher precision results than existing state-of-the-art approaches. Our best model achieved 8.7% improvement on visDrone and 20.3% on UAVDT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا